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Abstract

Photonic Signal Processing Using Nonlocal Brillouin Interactions

Shai Gertler

2021

In this dissertation, we explore the possibilities offered by the unique properties of Brillouin

scattering to implement signal-processing operations in photonic devices. Brillouin scatter-

ing —the coupling of light and sound waves— enables access to long-lived acoustic modes

directly from the optical domain and results in processes very different compared with other

optical systems. Furthermore, when utilized to process microwave signals, Brillouin-active

photonic systems are compelling for their ability to bridge the vastly different frequency

scales of microwave and optical signals.

We analyze the dynamics of forward Brillouin scattering, showing how they can give

rise to a nonlocal effect, in stark contrast with other optical nonlinear interactions. We

describe how these unusual properties can be exploited to engineer new types of devices,

where highly delocalized acoustic modes mediate scattering processes between spatially

separated light waves. Examining the potential of utilizing this scheme to perform filtering

operations, we identify a path towards low-noise and low-distortion performance for these

Brillouin-based technologies. Furthermore, we show how these photonic-phononic devices

can be implemented in a standard silicon platform.

Using these devices, we present tunable narrowband microwave-photonic filters, per-

forming both bandpass and notch filtering operations demonstrating sharp frequency roll-off

and excellent out-of-band rejection, previously unattainable in silicon photonics. Looking

forward, we explore the potential of utilizing multiple optical spatial modes in such devices,

showing their unique properties, and study new waveguide designs that could enable silicon

Brillouin-active devices to handle higher optical power. In addition to bringing greatly en-

hanced functionality to silicon photonics, we demonstrate the reliability and robustness of

the devices, key features for high-impact optomechanical applications. The photonic circuits

demonstrated here could be another step towards integrated signal processing systems.
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Chapter 1

Introduction

1.1 A brief history of Brillouin scattering

Inelastic light scattering was first discussed by Lord Rayleigh, Larmor, and Raman in the

early twentieth century [1–3], and has since opened the door to an entire field of research,

deepening our understanding into light-matter interaction, and leading to numerous tech-

nological applications. One of these scattering phenomena is Brillouin scattering, in which

light interacts with sound waves resulting in a nonlinear optical effect. Here, we summarize

some of the important landmarks in the discovery and research of Brillouin scattering over

the past century.

When inelastic scattering occurs, light exchanges energy with the medium, resulting in

a change of the optical wavelength. The change in energy can be the result of the motion of

particles in the medium due to thermal fluctuations, Doppler-shifting the frequencies of the

optical fields. When considering vibrations of molecules, this results in what we now refer

to as Raman scattering, first demonstrated in 1922 [4]. The first theoretical predictions of

light scattering from traveling acoustic waves were reported by Brillouin in 1922 [5] and

Mandelstam is said to have made similar predictions as early as 1918, although his results

were not published until 1926 [6]. This effect —light interacting with acoustic waves—

now referred to as Brillouin scattering, was first measured in liquids using a mercury lamp

1
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in 1930 by Gross [7], and further experimental demonstrations were soon to follow [8–10].

Interestingly, in 1932 Debye studied light scattering from acoustic waves generated in liquid

using a quartz crystal and a radio-frequency generator [11], showing multiple scattering

orders, as is obtained by a grating. Such scattering phenomena were subsequently used

as a technique for the measurement of material properties [12–14], however, all of these

measurements relied on thermally-induced motion in a material, where the acoustic fields

are not affected much by the propagation of light —commonly referred to as Brillouin light

scattering (BLS).

Only after the introduction of the laser in 1960 [15], providing a bright, coherent light

source, stimulated Brillouin scattering (SBS) could be demonstrated experimentally in

quartz and sapphire by Chiao, Townes, and Stoicheff in 1964 [16]. In the same year, Bloem-

bergen presented a theoretical framework describing stimulated Brillouin and stimulated

Raman scattering processes, where the coupling between light and sound waves is derived

both classically and quantum mechanically [17]. In a stimulated process, light does not

only scatter off the acoustic waves present in the material but also drives the acoustic waves

through optical forces. Subsequently, stimulated Brillouin scattering was also measured in

liquids [18,19] and gases [20].

With the development of optical fiber, extremely long optical interaction lengths were

possible with the novel platform, opening a new era of nonlinear optical experiments. There-

after, Brillouin scattering was demonstrated in fiber in 1972 [21]. In the context of optical

communication, Brillouin scattering sets a limit to the power handling capability of a sys-

tem, as it depletes the optical signal and results in unwanted back reflections [22, 23]. The

mitigation of these effects in fiber-based systems is an active area of research [24–26].

Brillouin interactions were studied up to this point in a backward geometry, where

the incident and scattered light counter-propagate to fulfill the necessary conditions for

efficient scattering. However, optical fibers enabled the demonstration of Brillouin scattering

in a forward geometry, where the optical fields co-propagate, which was experimentally

demonstrated in 1985 [27]. This can be achieved in systems that confine sound waves in

the transverse direction, as is the case with an optical fiber. Forward Brillouin scattering
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was later shown to be possible between distinct optical modes, first demonstrated in 1990

in dual-mode fiber [28].

The development of photonic-crystal fibers enabled the design of structures confining

light and sound waves to small spatial regions compared with typical optical fibers, re-

sulting in even stronger interactions [29, 30]. Furthermore, hollow-core fibers enable the

measurement of Brillouin scattering with gases trapped within the fiber [31, 32], and by

using liquid-core fibers unprecedented forward Brillouin gain in liquids has been demon-

strated [33].

An insightful perspective of the history of Brillouin scattering can be found in Ref. [34].

1.1.1 Integrated Brillouin photonics

The advances in integrated photonic circuits over the last decade have opened the door to

a new class of tailorable acousto-optic interactions. Through the use of micro- and nano-

fabrication techniques, the confinement of fields to small spatial regions, with a high degree

of control over the device geometry, has produced many new Brillouin-active systems [35].

These include micro-resonators [36–38] and micro-spheres [39, 40] utilizing high quality-

factor whispering-gallery modes. In the context of integrated waveguides, backward Bril-

louin scattering was first demonstrated in a As2S3 chalcogenide rib waveguide [41], showing

extremely high gain thanks to its property of guiding both light and sound in the waveguide

core. Weaker Brillouin scattering has been reported in silicon nitride (Si3N4) [42], however,

silicon nitride waveguides have shown Brillouin lasing utilizing the acoustic waves in an

adjacent silica (SiO2) layer [43]. Achieving Brillouin scattering in a standard silicon-on-

insulator (SOI) —perhaps the most well-developed photonic integrated circuit platform—

has been challenging, requiring the separation of wave-guiding structures from the buried

oxide layer to prevent strong acoustic dissipation [44].

1.1.2 Brillouin scattering in silicon

Silicon has numerous advantages as a photonic platform due to its high refractive index, the

ability to integrate electrical components in the same material layer, and vast fabrication
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knowledge and infrastructure thanks to the CMOS industry [45–48]. Furthermore, the

development of optical components within the silicon platform, including detectors [49, 50]

modulators, filters [51,52] [53], amplifiers [54], and lasers [55,56] could enable fully integrated

silicon-photonic circuits for future technologies [57–59].

In the context of nonlinear optics, the tight confinement of light within a small waveguide

results in strong optical nonlinearities such as Kerr [54,60] and Raman [55,61], which can be

utilized for silicon-photonic technologies [62]. However, the buried oxide under the silicon

guiding layer has a lower sound velocity compared with silicon, such that the acoustic fields

taking part in Brillouin interactions dissipate into the device substrate.

Only once device geometries separating the waveguides from the silica under-cladding

were designed, Brillouin scattering was measured in silicon for the first time [44], showing

gain orders-of-magnitude larger than possible in optical fiber. These devices utilized a

silicon waveguide embedded in a tensile silicon nitride membrane which was used for guiding

acoustic modes. Interestingly, the photo-elastic properties of silicon show the strongest

Brillouin interaction in a forward geometry, such that all optical fields are co-propagating.

Subsequent device designs have utilized a standard silicon-on-insulator platform, demon-

strating net Brillouin gain [63, 64]. Additionally, by using multi-mode waveguides, for-

ward inter-modal scattering has been demonstrated in silicon between two distinct spatial

modes [65]. The vastly different properties of inter-modal scattering has enabled the demon-

stration of high-gain amplifiers [66], lasers [56] and nonreciprocal optical transmission [65].

1.2 Brillouin-based technologies

Brillouin scattering has several unique properties that make it an attractive scientific re-

search tool, as well as having high-impact technological applications. The acoustic waves

taking part in Brillouin interactions are typically in the microwave range, making it an ideal

candidate for many microwave-photonic systems [67]. The slow speed of sound, typically

five orders of magnitude slower than that of light, enables long delay times that can be

useful for information storage and filtering [68]. Furthermore, the acoustic properties can
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be tailored by tuning the optical wavelength, or through the device geometry [69]. Interest-

ingly, the dependence of these properties on the strain, temperature, and the environment

can be utilized to design high-resolution distributed sensors [70]. Additionally, by utilizing

traveling acoustic waves, nonreciprocal light propagation can be engineered [71]. In this

section, we present a summary of applications utilizing Brillouin scattering. Further review

of the subject can be found in Refs. [35, 72].

The unique dynamics of Brillouin scattering, with its inherent nonlinear nature, have

been used to demonstrate optical pulse shaping [73], pulse compression [74–76], optical lim-

iting [77], beam combining [78,79], and mode filtering [80–82]. Recently, Brillouin scattering

was also used to study exceptional points in an optical fiber [83].

Another interesting property of Brillouin scattering is that the backward scattered light

produced through the Brillouin process is a phase conjugated version of the incident light

[84,85]. Such phase conjugation can be of practical use, for example, to reverse aberrations

and distortions in the wavefront of an optical beam, improving beam quality and power

scaling [86].

The acoustic properties of a material are highly dependent on temperature and strain,

which in turn translate into a measurable optical response [87–89]. This has been used

to develop Brillouin-based fiber sensors, enabling distributed measurements of strain and

temperature over large ranges (∼100 km) and high resolution (∼10 mm) [90–93]. More

recently, forward Brillouin scattering has been used in fiber sensors, where the unique

properties of forward Brillouin interactions enable the sensing of material properties and

the environment outside the fiber [94–97].

Brillouin-enhanced four-wave-mixing, also referred to as a Brillouin dynamic grating, is

a scheme in which two ‘pump’ laser beams are used to produce periodic refractive index

variations in an optical fiber through electrostrictive optical forces. This perturbation acts

as a narrowband Bragg grating, reflecting a separate ‘probe’ beam [98, 99]. Such schemes

have been used to produce filters [100–102], distributed fiber sensors [103, 104], as well as

phase conjugation [105,106], and other signal processing operations [107,108]. This process

has also been demonstrated in a chip-integrated platform [109].



CHAPTER 1 6

Brillouin scattering can be used for amplification, where power is transferred from a

strong ‘pump’ laser source to a weak input signal through the scattering process. This

effect was first used to demonstrate amplification of short pulses using gas cells [110, 111].

In fiber optics, the fiber itself can be utilized as the gain medium. For example, Brillouin

amplification has been used to offset propagation losses in optical fiber over large distances

[112–117].

The first demonstration of Brillouin lasing used a segment of optical fiber to provide

gain within a free-space optical resonator [118]. Subsequently, using optical fiber couplers,

all-fiber Brillouin lasers were demonstrated to have low threshold power [119] and high

coherence [120, 121]. More recently, Brillouin lasers have also been demonstrated on-chip

within several material platforms [43, 56, 122, 123]. An intriguing application of Brillouin

lasers is to design optical gyroscopes, utilizing the Sagnac effect to detect the phase shift

between two counter-propagating laser modes. Such schemes have been demonstrated in

Brillouin fiber lasers [124,125], and more recently in chip-scale resonators [126,127].

The Brillouin process does not only amplify a probe signal but also induces a frequency-

dependent phase shift, which changes the effective velocity of light propagating in the

medium. The controlled phase shift can be used to generate ‘slow’ and ‘fast’ light, which

can be tuned using an optical pump tone [128]. Such schemes can have applications

in the processing of data in communication systems and as well as enhancing nonlin-

ear interactions [129], and this effect has been demonstrated in multiple types of optical

fibers [130–132], as well as in integrated platforms [133]. Furthermore, this strategy could

be used for the storage of optical pulses which can be retrieved at a later time [68,134,135].

Another active area of research where Brillouin scattering can have a potential techno-

logical impact is the design of chip-integrated optical isolators. The traveling-wave nature of

the acoustic field can be utilized to produce nonreciprocal optical transmission [136], as was

first demonstrated in photonic crystal fiber [71,137], and more recently in a chip-integrated

platform [138,139].

In the field of microwave-photonic systems —where the optical domain is utilized to

perform RF signal processing operations— Brillouin-based devices have shown great promise
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as a strategy to develop new technology. Brillouin scattering provides a natural interface

between the optical and microwave domains, combining wide-band operation possible in

photonic systems, and high spectral resolution enabled by the acoustic field properties. An

important example is microwave-photonic filters, where Brillouin scattering enables filtering

with a spectral resolution that is challenging to achieve in all-optical systems thanks to the

long lifetime of the acoustic waves taking part in the interaction. This is similar to the

role played by acoustic waves in microwave systems [140], which are accessible directly from

the optical domain using Brillouin interactions. The possible tunability of such schemes —

challenging to achieve with typical microwave components— has been demonstrated both

in optical fibers [69,141], as well as chip-integrated systems [142–144].

The frequency shift imparted on optical tones by the Brillouin scattering process enables

the generation of microwave signals through optical mixing. For example, by combining un-

shifted light with Brillouin-scattered light, microwave signals can be synthesized [145], and

methods utilizing Brillouin scattering for amplification of specific sidebands of a modulated

signal have also been demonstrated [146, 147]. Additionally, utilizing Brillouin scattering

within an optoelectronic oscillator can result in higher coherence of the microwave sig-

nals [148]. Another intriguing method to generate low-noise microwave signals is by using

cascaded Brillouin lasing, in which a frequency comb is generated [149]. Using ultra-high

quality factor cavities, many lasing tones can be produced through multiple Brillouin inter-

actions [150, 151], and by combining different comb lines on a photodiode, highly coherent

microwave signals can be produced [38].

Our final example of Brillouin-based microwave-photonic signal processing is imple-

menting an RF phase shifter. Brillouin scattering can be used to induce a phase shift to

a modulation sideband of an optical carrier encoding RF information, resulting in a phase

shift of the RF signal after its conversion back to the microwave domain, enabling wideband

operation and large phase shifts [152,153].
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1.3 Summary of dissertation

In this dissertation, we will explore how the unique properties of forward Brillouin interac-

tions can be utilized for novel device designs, with applications in microwave and optical

signal processing. We report recent results, both theoretical analyses as well as experimental

demonstrations, and explore possible future directions for optical and microwave technolo-

gies utilizing traveling-wave acousto-optic interactions. The dissertation is structured as

follows:

Chapter 2

We start by introducing Brillouin scattering theory in the context of nonlinear optical phe-

nomena. Focusing on guided-mode systems, we analyze three types of Brillouin interactions,

namely backward scattering, forward inter-modal scattering, and forward intra-modal scat-

tering. Using a Hamiltonian formalism, we will analyze the dynamics of the optical and

acoustic fields taking part in each process.

Chapter 3

Next, we study the unique nonlocal nature of forward Brillouin interactions, namely how

optical fields in two spatially separated waveguides take part in the same nonlinear pro-

cess. Using a Hamiltonian framework, we theoretically analyze possible devices utilizing

such interactions and show how these nonlocal interactions can utilize acoustic multi-mode

interference to produce a multi-pole frequency response, very different from typical acoustic

resonances. This chapter is based on work published in Ref. [154]:

S. Gertler, P. Kharel, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich. “Shaping
nonlinear optical response using nonlocal forward Brillouin interactions,” New Journal of
Physics, 22(4):043017, 2020.

Chapter 4

Here, we will introduce the concept of a microwave-photonic link, where microwave signals

are encoded onto an optical carrier for transmission and processing before demodulating
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them back to the microwave domain. We will analyze in detail an example of a microwave-

photonic link, defining the parameters and figures of merit useful for design and analysis, as

well as possible noise sources. Additionally, we will explore the opportunities that Brillouin-

based devices enable for microwave-photonic technologies.

Chapter 5

In this chapter we focus on a novel photonic-phononic emit-receive (PPER) scheme, utiliz-

ing nonlocal Brillouin interactions for microwave-photonic filtering. Using the framework

developed in Chapters 3 and 4, we will analyze a PPER-based microwave-photonic bandpass

filter, exploring the microwave link properties, noise sources, and nonlinearities. We will

identify paths towards high-performance systems based on these schemes, and analyze in

detail the opportunities of operating at low temperatures, where Brillouin noise and acoustic

dissipation are vastly reduced. This chapter is based on work published in Ref. [155]:

S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. Kharel, and P. T. Rakich. “Microwave filter-
ing using forward Brillouin scattering in photonic-phononic emit-receive devices,” Journal
of Lightwave Technology, 38(19):5248–5261, 2020.

Chapter 6

We will describe practical design considerations when implementing a multi-pole PPER

device in a standard silicon-on-insulator platform. We will show how acoustic mode engi-

neering enables the controlled coupling of acoustic modes required for multi-pole frequency

response, and demonstrate how it can be tailored through the device geometry. Addition-

ally, we will show that these silicon devices are a feasible strategy for real-world applications,

demonstrating high yield and robust performance using standard CMOS fabrication meth-

ods. This chapter is based on work published in Ref. [156]:

S. Gertler, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich. “Tunable microwave
photonic filtering with high out-of-band rejection in silicon,” APL Photonics, 5(9):096103,
2020.
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Chapter 7

Using the devices discussed in the previous chapter, we present new microwave-photonic

multi-pole filters with ∼100× higher spectral resolution than previously possible in silicon

photonics. Additionally, we will demonstrate how such filters can be tuned over a large

spectral range without degrading their narrowband lineshape. This chapter is based on

work published in Ref. [156]:

S. Gertler, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich. “Tunable microwave
photonic filtering with high out-of-band rejection in silicon,” APL Photonics, 5(9):096103,
2020.

Chapter 8

In this chapter, we will show how a narrowband microwave-photonic notch filter —suppressing

a narrow spectral band— can be obtained by utilizing a PPER device within an interfer-

ometer. Through coherent signal interference, we will demonstrate filters with ∼MHz res-

olution, and up to 60 dB of signal suppression. Furthermore, we will show how acoustic

band engineering can be utilized to suppress possible distortions in the filter pass-band, and

how both single- as well as multi-pole filters can be obtained. Additionally, we show that

the notch-frequency can be tuned, enabling selective suppression of interfering signals with

record-high spectral resolution in an integrated silicon-photonic chip.

Chapter 9

Here, we will explore the possibilities of using inter-modal Brillouin scattering within a

PPER scheme, which has vastly different properties compared to the intra-modal process

we have considered so far. We will analyze the fields propagating in such a device, and show

how nonreciprocal transmission can arise. Such devices could be used to produce integrated

optical isolators, and we will explore strategies to enhance their potential performance.

Finally, we will present inter-modal PPER devices utilizing acoustic-mode interference to

produce a narrow two-pole frequency response, which could be used for novel optical and

microwave signal processing schemes. Parts of this chapter are based on work published in
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Ref. [139]:

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich. “Nonreciprocal
interband Brillouin modulation,” Nature Photonics, 12(10):613–619, 2018.

Chapter 10

Finally, we will address one of the fundamental limitations in silicon photonics, namely its

limited power handling due to nonlinear loss. As nonlinear loss depends on the effective area

of the optical modes, we study possible Brillouin-active waveguide designs where optical

power is distributed between multiple guiding regions. Additionally, we will explore a

different strategy of power distribution, where a signal is processed in multiple Brillouin-

active regions in parallel. We will show how such a scheme can be implemented using a

balanced Mach-Zehnder interferometer, which has the added benefit of separating a strong

pump tone from a weak signal at the device output port.



Chapter 2

Brillouin scattering

2.1 Nonlinear optics and optical forces

We start our analysis of this optical phenomenon, as might be expected, by introducing

Maxwell’s equations [157,158]

∇×E = − ∂

∂t
B, ∇ ·D = ρ,

∇×H =
∂

∂t
D + J, ∇ ·B = 0,

(2.1)

where E and H are the electric and magnetic field vectors, and D and B are the elec-

tric and magnetic displacement fields, respectively. The constitutive relations between the

polarization of the medium and the displacement fields are defined by

D = ε0E + P, B = µ0H + µ0M, (2.2)

where ε0 and µ0 are the vacuum permittivity and vacuum permeability, respectively, related

by ε0µ0 = c−2, where c is the speed of light in vacuum.

Throughout this work, we will be interested in charge-neutral dielectric systems where

there are no free charges (ρ = 0) and no free currents (J = 0), and assume that the medium

12



CHAPTER 2 13

is nonmagnetic (M = 0), which enables us use Eqs. (2.1) and (2.2) to arrive at

∇×∇×E +
1

c2

∂2

∂t2
E = − 1

ε0c2

∂2

∂t2
P. (2.3)

The polarization density (P) represents the response of a material to an electric field

(E), and we can expect them to have some functional relationship, which we can express

as a power series

P = ε0χ
(1)E + ε0χ

(2)EE + ε0χ
(3)EEE + . . .︸ ︷︷ ︸

PNL

(2.4)

Here, we have factored out ε0 and expressed the series coefficients as the susceptibilities χ(n).

For simplicity, in the equation above and for the rest of this section we assume scalar fields1

and instantaneous material response2. The first term of the series is the linear response of

the material, and we denote the rest of the series —describing the nonlinear response— as

PNL. Plugging Eq.(2.4) into Eq. (2.3) yields the nonlinear wave equation

∇×∇×E +
εr
c2

∂2

∂t2
E = − 1

ε0c2

∂2

∂t2
PNL, (2.5)

where εr = 1 +χ(1) is the dielectric constant of the medium. This is the general form of the

electric field wave equation commonly used in nonlinear optics [157], where we see that the

polarization acts as a source term driving the electric fields.

We can see from Eq. (2.4) that the driving term includes products of the electric

field, leading to frequency mixing, such that the spectral contents of the polarization can

include sum and difference combinations of the electric field frequency components. For

example, in a second-order (χ(2)) process, a field with two frequency components E(t) =

E1 cos(ω1t) + E2 cos(ω2t) will result in polarization P (t) ∝ E2(t) = P0 + P1 cos(2ω1t) +

P1 cos(2ω2t) + P12 cos((ω1 − ω2)t) + P21 cos((ω2 − ω1)t), leading to nonlinear phenomena

such as second-harmonic generation, sum-frequency generation and difference-frequency

1. More generally, the susceptibilities are tensors relating the different components of the fields
Pi = ε0

∑
j χ

(1)
ij Ej + ε0

∑
jk χ

(2)
ijkEjEk + ε0

∑
jk` χ

(3)
ijk`EjEkE` . . . .

2. This is equivalent to assuming a lossless, dispersionless material. In the general case, we will have
P (t) = ε0

∫∞
0
dt′χ(1)(t− t′)E(t′) + ε0

∫∞
0
dt′dt′′χ(2)(t′, t′′)E(t− t′)E(t− t′′) + . . . .
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generation. A common example of a third-order (χ(3)) nonlinearity is the Kerr effect,

where the refractive index of a medium depends on the intensity of the electric field through

electronic degrees of freedom. Another third-order effect is Raman scattering, arising from

vibrational degrees of freedom in the material lattice structure, also referred to as optical

phonons. In this work, we will focus on Brillouin scattering, in which the interaction of the

electric fields with acoustic waves in the materials —also referred to as acoustic phonons—

results in a third-order optical nonlinearity, as we shall describe in the next sections.

The effects of acoustic waves on an optical medium can be separated into two terms:

photoelasticity and the effects of a moving boundary.3 The time-depended perturbation

of the optical properties results in light scattering from an optical field, with an induced

wavelength shift.

Photoelasticity refers to the change in the electric susceptibility (or equivalently, re-

fractive index) under mechanical strain. This is commonly described using a photoelastic

tensor pijk`, relating the optical susceptibility tensor element χPE
ij to the strain tensor ele-

ment Sk` [160]

χPE
ij = ε2r

∑
k`

pijk`Sk` = ε2r
∑
k`

pijk`∂ku`, (2.6)

where in the last step we have used the symmetry of the photoelestic tensor to express this

in terms of the mechanical displacement component u` [159].

The moving boundary term is the displacement of material boundaries by the acoustic

waves, which deforms the optical fields at material interfaces, as a consequence of the

continuity conditions for the electric fields across dielectric boundaries. Since this occurs

only at material boundaries, it is not present in bulk geometries. This effect grows as the

cross-section of waveguides is reduced, and in sub-wavelength scale waveguides, it can be

the dominant interaction [161].

These processes describe the effects of acoustic fields present in the material, on the opti-

cal fields propagating in the medium, without considering the back-action of the light waves

on the acoustic fields. This is the case of spontaneous Brillouin scattering, where phonons

3. In some cases there may be a third term corresponding to the effects of dynamic magnetic coupling,
however, it is very weak and can be ignored in most cases [159].
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Figure 2.1: (a) In a Brillouin scattering process, light interacts with acoustic waves in a
medium. The scattering is inelastic, resulting in frequency shifts of the optical field. (b)
Electric fields in a material can drive acoustic fields through optical forces, namely radiation
pressure and electrostriction. The acoustic fields can result in light scattering, yielding a
self-reinforcing feedback loop. (c) Simulating optical forces as a result of a TE-like mode
guided in a 250 × 500 nm silicon waveguide. Ex: x-component of the electric field at a
wavelength λ = 1550 nm, fRP

i : radiation pressure forces (i = {x, y}), fES
i : electrostrictive

pressure (i = {x, y, z}). The forces are normalized by the optical power.

are present in the material as a result of the thermal occupation of the acoustic mode

(with a scattering rate that is proportional to the temperature). This can also be the case

in acousto-optic modulators, which use electromechanical transduction to generate strong

acoustic waves in the medium regardless of the presence of the optical fields. In contrast,

in stimulated Brillouin scattering, the optical fields themselves generate forces, driving the

same acoustic waves that scatter light. This feedback loop, between optical forces and light

scattering, is illustrated schematically in Fig. 2.1(b). For each of the light-scattering mech-

anisms we have described, photoelasticity and moving boundaries, there is a corresponding

driving mechanism, namely electrostriction and radiation pressure, respectively [159].
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Electrostriction is the strain induced in a dielectric material as a result of electromagnetic

fields. This can be expressed in terms of the electrostrictively-induced stress [162]

〈σPE
ij 〉 = −1

2
ε0ε

2
r

∑
k`

pijk`〈EkE`〉, (2.7)

which can be related to an electrostricive force4, fES = −∇ · σPE.

Radiation pressure can be interpreted as the result of the reflections of light off waveguide

boundaries, which is the mechanism used to guide optical fields. The momentum transferred

between the optical fields and the waveguide surface due to this reflection results in a force

that can be derived directly from the Maxwell stress tensor [163], or from the continuity

conditions derived from Maxwell’s equations [159]. The force resulting from radiation pres-

sure imparted by the optical field on waveguide boundaries is given by fRP = −∇ · σRP,

where

σRP
ij = −Tij = −ε0εr

(
EiEj −

1

2
δij |E|2

)
− µ0µr

(
HiHj −

1

2
δij |H|2

)
, (2.8)

and Tij is the commonly used Maxwell stress tensor element5 [162]. Fig. 2.1(c) shows the

simulation of a TE-like optical mode in a silicon waveguide and the calculated optical forces

it generates. We can see that radiation pressure only impacts the boundaries of the waveg-

uide, while electrostriction is present in the volume of the waveguide. Furthermore, the

simulation shows us that the x-polarized electric field generates the strongest electrostric-

tive forces along the x axis. This is due to the fact that in silicon, the largest photoelastic

tensor element is p11, coupling the electric field with a parallel strain component.

Both electrostrictive and radiation pressure forces scale with the light field intensity

f ∝ E2 (see Eqs. (2.7) and (2.8)) and contribute to a χ(3) nonlinearity through Brillouin

4. Electrostrictive forces include both a body force inside the material, as well as an electrostrictive pressure
at interfaces where discontinuous stresses are present [163].

5. This is the form of the Maxwell stress tensor to be used in dielectrics, such that its divergence gives
us the forces on material boundaries, and does not represent body stress (the diagonal elements do not
represent pressure). For further discussion see Refs. [164,165].
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interactions. We can see this by analyzing the elastic displacement6 driven by the optical

forces, which can be written as a wave equation

∂2

∂t2
u+ Γ∂tu− v2

ac∇2u =
1

ρ
〈f〉, (2.9)

where Γ is the acoustic damping rate, vac the acoustic velocity and ρ the material density.

We see that the displacement is proportional to the force, such that u ∝ E2 and since the

acoustic displacement linearly affects the optical susceptibility χNL ∝ u (see Eq. (2.6) for

example), overall we have χNL ∝ E2. In terms of nonlinear polarization [157], this is a

third-order optical nonlinearity PNL = ε0χ
NLE ∝ E3.

Summarizing this analysis, we have shown that Brillouin scattering is an acousto-optic

process in which optical fields generate optical forces, driving acoustic waves in the medium,

which in turn scatter light, as illustrated in Fig. 2.1(b). The interaction of the optical fields

with the acoustic waves in the material result in an optical nonlinearity consistent with a

χ(3) process. Interestingly, the optical forces and light-scattering mechanisms are linked

through thermodynamics and energy conservation considerations [159, 166, 167]. In fact,

they can be described as conjugate processes and will be represented by a single coupling

rate when we derive Brillouin scattering dynamics in Section 2.3.

The strength of Brillouin interactions is commonly quantified through a Brillouin gain

coefficient GB. As we will show in detail in the next section, the Brillouin gain describes

the energy transfer between two optical fields coupled through a Brillouin interaction [157]

∂

∂z
Ip = −GBIpIs,

∂

∂z
Is = −GBIpIs, (2.10)

where Ip, Is are optical intensities of a ‘pump’ and a red-shifted ‘Stokes’ wave7. The

Brillouin gain can be directly calculated from the optical forces and acoustic modes present

6. The displacement field is defined here as the motion of nuclei from their equilibrium position.

7. In this example, we are assuming a backward Brillouin process, where the pump and Stokes waves are
counter-propagating.
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in the system [161,163]

GB (Ω) =
∑
m

(
2ω

ΩmΓmv2

) ∣∣∣〈f ,um〉∣∣∣2( (Γm/2)2

(Ωm − Ω)2 + (Γm/2)2

)
, (2.11)

where ω and v are the optical frequency and group velocity, respectively, and um denotes

the mth acoustic mode, with resonant frequency Ωm and dissipation rate Γm. The electric

and acoustic fields in this calculation are normalized such that 〈E, ε0εrE〉 = 〈um, ρum〉 =

1, where ρ denotes the material density, and 〈·, ·〉 denotes an overlap integral over the

waveguide cross-section. We can see from Eq. (2.11) that the Brillouin interaction is

determined by the overlap integral of the optical force, which can be written as the linear

sum of its components f = fES + fRP, and the acoustic mode profiles, each with Lorentzian

frequency response, where Ω is the frequency of the optical forcing functions. Additionally,

it is interesting to note that Brillouin gain grows with a longer acoustic-mode lifetime

(∝ 1/Γm) and lower optical group velocities, both of which can be optimized for stronger

Brillouin interactions [168,169].

2.2 Phase matching and energy conservation

It is convenient to separate the analysis of Brillouin scattering into different cases, depending

on the scattering geometry and the modes taking part in the process. In the following

sections, we will consider three scattering processes relevant for guided systems, where the

optical fields are all co-propagating or counter-propagating along the same axis:

1. Backward stimulated Brillouin scattering: Counter-propagating optical fields

coupled to a longitudinal acoustic mode.

2. Forward stimulated inter-modal Brillouin scattering: Co-propagating optical

fields in distinct modes (i.e., different polarizations or spatial modes) coupled to a

guided acoustic mode.

3. Forward stimulated intra-modal Brillouin scattering: Co-propagating optical

fields in the same optical mode coupled to a guided acoustic transverse mode.
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As we shall see next, these different types of interactions have different properties and can

lead to vastly different dynamics.

2.2.1 Backward stimulated Brillouin scattering

In the case of backward stimulated Brillouin scattering, all fields (optical and acoustic)

propagate parallel to the same axis. As a first analysis, to help us gain some intuition, we

assume the periodic perturbations caused by the acoustic wave act as a propagating Bragg

mirror, traveling at the sound velocity in the material vac and reflecting light impinging

on it. Since this mirror is moving, the reflected light will experience a Doppler-shift in

frequency, given by

∆ω = ±2
vac

c/n
ω0 = ±2nvac

2π

λ0
, (2.12)

where n is the refractive index of the medium and ω0 the optical frequency, which can

also be expressed in terms of wavelength λ0 = 2πc/ω0. The frequency shift can be to a

lower frequency, a redshift which is commonly referred to as a Stokes process, as well as

to a higher frequency, a blueshift known as an anti-Stokes process. In these two cases, the

acoustic field is propagating in a different direction with respect to the incident field, as

illustrated in Fig. 2.2.

The scattering process can also be interpreted in a particle-like picture. The Stokes

process can be described as an optical photon losing a quantum of energy, creating a phonon,

resulting in a lower frequency photon. In contrast, in an anti-Stokes process the photon

absorbs a quantum of energy, annihilating a phonon, resulting in a higher frequency photon.

While Eq. (2.12) gives us the frequency shift experienced by the scattered light, it is not

the full picture, as we need to consider the fields’ wavevectors to account for phase-matching

conditions. Using the intuition from the particle analogy, we can think of an input photon

with wavevector kp decaying into a phonon with wavevector qs and a counter-propagating

Stokes photon with wavevector ks, such that a phase-matched process requires kp = qs−ks.

For an anti-Stokes process, a phonon with wavevector qas is absorbed by the incoming

photon to produce an anti-Stokes photon with wavevector kas, requiring kp + qas = −kas.
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Rearranging, we have

qs = kp + ks ≈ 2kp, qas = − (kp + kas) ≈ −2kp, (2.13)

where we have used the approximation that the optical wavevector does not change substan-

tially over the Brillouin frequency shift, i.e., kp ≈ ks ≈ kas. We can see that the wavevectors

of the phonons taking part in the Stokes and anti-Stokes processes have different signs, cor-

responding to propagating and counter-propagating waves with respect to the input optical

field, and consistent with our ‘moving mirror’ analogy from Eq. (2.12).

Using these phase-matching condition together with the acoustic dispersion relation

Ωi = vac|qi| (i = {s, as}) and optical dispersion relations ωi = (c/n)|ki| (i = {s, p, as}), we
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Figure 2.2: Phase matching and energy conservation conditions for backward SBS. (a)
Stokes scattering and (b) anti-Stokes scattering. Top: particle analogy, where a phonon is
created (Stokes process) or annihilated (anti-Stokes process). Middle: energy conservation
and phase-matching conditions. Bottom: Optical and acoustic dispersion diagrams.
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can find the frequency of the phonon taking part in the Stokes interaction

Ωs = vacqs = vac (kp + ks) = vac
n

c
(ωp + ωs) = vac

n

c
(2ωp − Ωs) , (2.14)

where in the last step we have used energy conservation to write Ωs = ωp − ωs. Solving for

the Brillouin frequency, we have

Ωs = 2
vac

c/n

(
1

1 + vac
c/n

)
ωp ≈ 2

vac

c/n
ωp, (2.15)

where the approximation assumes that the sound velocity is much smaller than the optical

velocity (vac � c/n), yielding a result in agreement with Eq. (2.12). An identical calculation

can be done for anti-Stokes scattering, resulting in a similar expression to Eq. (2.15) with

a minus sign in the denominator. We see that in the case of backward Brillouin scattering,

the frequency shift is determined by the optical and acoustic wave velocities, as well as the

optical wavelength λp = 2πc/ωp.

2.2.2 Forward inter-modal stimulated Brillouin scattering

In the previous section, we have analyzed backward Brillouin scattering, where we could

describe an intuitive picture of three interacting scalar waves (two optical fields and one

acoustic field), as is the case of a single-mode fiber for example. However, Brillouin interac-

tions can also occur between distinct optical modes, such as different polarization states [30]

or spatial modes [65]. Additionally, scattering can take place between two optical modes

co-propagating along the same axis. Such forward inter-modal scattering processes can be a

result of both electrostriction and radiation pressure [44], and can be the dominant form of

scattering when, for example, the photoelastic tensor mediates strong Brillouin interaction

in the forward direction, such as in silicon.

In the forward inter-modal case, the wavevector of each optical mode is described by

a different dispersion relation, as shown in Fig. 2.3. Now, the phase-matching condition

for the Stokes process is given by qs(Ωs) = k1(ωp)− k2(ωs), where k1(ω) and k2(ω) are the

functions describing the wavevector as a function of frequency for the modes in which the
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pump and Stokes waves are propagating, respectively. At the same time, energy conserva-

tion requires ~Ω0 = ~ωp− ~ωs, illustrated in Fig. 2.3. Similarly, for an anti-Stokes process,

the phase matching condition is given by qas(Ωas) = k2(ωas)−k1(ωp), where now k2(ω) and

k1(ω) describe the dispersion relations of the anti-Stokes and pump modes, respectively,

and energy conservation is given by ~Ω0 = ~ωas − ~ωp.

The wavevector of the phase-matched phonon taking part in the process is usually

small and necessitates guided acoustic modes with a cut-off frequency. This allows for

modes with a small wavevector while supporting a non-vanishing frequency, as shown in

Fig. 2.3. Additionally, we can see that the Stokes and anti-Stokes phonons travel in opposite
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Figure 2.3: Phase matching and energy conservation conditions for forward inter-modal
SBS. (a) Stokes scattering and (b) anti-Stokes scattering. Top: particle analogy, where
a phonon is created (Stokes process) or annihilated (anti-Stokes process). Middle: energy
conservation and phase-matching conditions. Bottom: Optical and acoustic dispersion
diagrams. In this example, we considered the pump wave propagating in the fundamental
optical spatial mode, and the Stokes/anti-Stokes in the first anti-symmetric mode, however,
different configurations are possible.
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directions.

2.2.3 Forward intra-modal stimulated Brillouin scattering

Finally, we consider Brillouin scattering between optical waves co-propagating in the same

spatial and polarization mode, known as forward intra-modal scattering

In contrast to inter-modal scattering, and in the absence of strong dispersion, a single

acoustic mode scatters the optical field to both the Stokes and ant-Stokes sidebands. Fur-

thermore, the scattering can cascade further to multiple sidebands, as shown in Fig. 2.4.

This scattering process is qualitatively different from inter-modal and backward Brillouin

scattering, as multiple optical tones are coupled by a single phonon mode, and as we shall

soon see, this results in a form of self-phase modulation.

Here, the phase matching requirements are qs = kp − ks ≈ 0 for a Stokes process,

and qas = kas − kp ≈ 0 for the anti-Stokes case, where we have used the fact that the

wavevector of a given optical mode does not change much over the acoustic frequency scale

(kp ≈ ks ≈ kas). We can see that the phonons taking part in this process have a vanishingly-

small wavevector. Additionally, assuming linear dispersion for the optical mode over this

frequency range k = (neff/c)ω together with energy conservation, we have

qs =
neff

c
(ωp − ωs) =

neff

c
Ω0 =

neff

c
(ωas − ωp) = qas, (2.16)

showing that the phonons mediating the Stokes and anti-Stokes process have the exact same

wavevector, and that it is in fact the same acoustic mode taking part in both scattering

processes.

2.3 Dynamics of Brillouin scattering processes

2.3.1 Hamiltonian framework

Now that we have presented the necessary energy and phase-matching conditions for the

different types of Brillouin scattering processes, we will proceed to derive the dynamics
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Figure 2.4: Phase matching and energy conservation conditions for forward intra-modal
SBS. (a) Stokes scattering and (b) anti-Stokes scattering. Top: particle analogy, where
phonons are created (Stokes process) or annihilated (anti-Stokes process). Middle: energy
conservation and phase-matching conditions, showing how the same phonon mode takes
part in both Stokes and anti-Stokes processes. Bottom: Optical and acoustic dispersion
diagrams, which are essentially identical in Stokes and anti-Stokes processes.

of the optical and acoustic fields taking part in these interactions. We will use a traveling

wave Hamiltonian formalism [170–172] which enables the treatment of both inter-modal and

intra-modal scattering. Additionally, this approach enables a smooth connection to other

fields such as optomechanics and quantum optics [170, 171, 173]. While we are choosing

to present this formulation using quantum operators, the correspondence principle (or the

canonical quantization procedure) guarantees that the basic structure of the equations of

motion will be identical when examined in the classical domain. Alternative derivations,

using classical fields, can be found for example in Refs. [29, 71,154,159,163].

We start by describing a waveguide supporting both optical and acoustic modes, which
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is translationally invariant along the z axis. The Hamiltonian of this system consists of

terms describing the optical fields, the acoustic fields, and their interaction

H = Hopt +Hac +Hint. (2.17)

The optical and acoustic terms can be written as a sum over all spatial and polarization

modes (indexed using n for optical fields and m for acoustic fields), and integrated over all

possible wavevectors (denoted k for optical fields and q for acoustic fields)

Hopt =
∑
n

∫
dk ~ωn(k)A†n(k, t)An(k, t),

Hac =
∑
m

∫
dq ~Ωm(q)B†m(q, t)Bm(q, t).

(2.18)

Here, the mode amplitude An(k, t) is unit-less such that its modulus squared represents the

number of photons in mode n with wavevector k, and similarly, the modulus squared of

Bm(q, t) represents the number of phonons in mode m with wavevector q.

We are interested in analyzing travelling wave systems, and it is convenient to define

new operators describing wave packet envelopes, by using a linear combination of modes

with different wavevectors

an(z, t) =
1√
2π

∫
dk An(k, t)ei(k−kn)z, bm(z, t) =

1√
2π

∫
dq Bm(q, t)ei(q−qm)z, (2.19)

where the amplitude operators an(z, t) and bm(z, t), describe optical and acoustic modes,

respectively. Note that we are defining the operators around carrier wavevectors (kn and

qm for the optical and acoustic waves, respectively), such that we are factoring out the fast

spatial oscillations of the operators. These operators are time dependent, as we are working

in the Heisenberg picture, and have units of [length−1/2], such that their modulus squared

represents the number of photons or phonons per unit length, and obey the commutation

relations

[
an(z, t), a†n′(z

′, t)
]

= δ
(
z − z′

)
δn,n′ ,

[
bm(z, t), b†m′(z

′, t)
]

= δ
(
z − z′

)
δm,m′ . (2.20)
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We can express the Hamiltonian using these spatial operators substituting Eq. (2.19)

into Eq. (2.18), yielding

Hopt =
∑
n

~
∫
dz a†n(z, t)ω̂nan(z, t),

Hac = ~
∫
dz b†(z, t)Ω̂mb(z, t).

(2.21)

The wavevector-dependent frequencies ωn(k) and Ωm(q) from Eq. (2.18) are now written

as spatial operators ω̂n and Ω̂m, by expanding them in a power series around their central

wavevectors (kn and qm, respectively) and replacing the wavevector by a spatial derivative

(as they are a Fourier pair). This yields [172]

ω̂n = ω(kn) + ∂kω(kn) · k +
1

2!
∂2
kω(kn) · k2 +

1

3!
∂3
kω(kn) · k3 + . . .

= ω(kn) + ∂kω(kn) · (−i∂z) +
1

2!
∂2
kω(kn) · (−i∂z)2 +

1

3!
∂3
kω(kn) · (−i∂z)3 . . .

(2.22)

for the optical modes, and similarly, for the acoustic modes we have

Ω̂m = Ω(qm) + ∂qΩ(qm) · (−i∂z) +
1

2!
∂2
qΩ(qm) · (−i∂z)2 +

1

3!
∂3
qΩ(qm) · (−i∂z)3 + . . .

(2.23)

where we have used the notation ∂x to denoted a derivative with respect to the variable x.

It is important to note, that since we are using a power series —which we will soon

truncate for practical calculations— this approach assumes that the fields we are analyzing

are sharply peaked around their central wavevector, consistent with a slowly varying en-

velope approximation, which is commonly used in nonlinear optics analyses [157, 172]. To

first order, these operators are given by

ω̂n ≈ ωn − ivn
∂

∂z
, Ω̂m ≈ Ωm − iVm

∂

∂z
, (2.24)

where we have denoted the center frequencies ωn = ω(kn) and Ωm = Ω(qm), and have used

the fact that the derivative of the dispersion relation is the group velocity, i.e., vn = ∂kω(kn)

and Vm = ∂qΩ(qm).
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To capture the nonlinear response of the system, we introduce an interaction term of

the form

Hint =
∑
n

∑
n′

∑
m

~
∫
dz g∗n,n′,m an(z, t)a†n′(z, t)b

†
m(z, t)e−i(qm−kn+kn′ )z + H.C., (2.25)

where the acousto-optic coupling gn,n′,m describes the coupling between two optical modes

n and n′ interacting with a phonon mode m, with units of [length1/2 · time−1]. This can

have both photoelastic (electrostrictive) and radiation pressure contributions, [171]

gn,n′,m = gPE
n,n′,m + gRP

n,n′,m, (2.26)

which can be calculated using an overlap integral of the cross section of the modes taking

part in the interaction [171,172]

gPE
n,n′,m =

√
~ωnω′nΩm

8ε20

∫
dxdy Di

n
∗
Dj
n′ pijkl

∂ukm
∂rl

,

gRP
n,n′,m =

√
~ωnω′nΩm

8ε20

∫
dxdy

[
ε20E

‖
n

∗
E
‖
n′∇ε(x, y)−D⊥n

∗
D⊥n′∇ε−1(x, y)

]
· um,

(2.27)

where summation is implicit over identical indices. In these expressions, E and D are the

electric field and the electric displacement field, respectively, um is the elastic displacement

profile of phonon mode m and εr is the waveguide dielectric constant, all functions of the

cross-section (x, y) over which the integration is carried out. For the radiation pressure term,

which models boundary forces, we have separated the field components into those parallel

(‖) and perpendicular (⊥) to the boundaries. The photoelastic term is an overlap integral

of the electric displacement field components with the photoelastic tensor (pijkl) and the

strain profile of the acoustic mode (∂uk/∂rl = Skl). When the waveguide dimensions are

not sub-optical wavelength, which will be most of the cases we are interested in throughout

this work, we can usually neglect the radiation pressure term, as it is much smaller than

that of the electrostrictive forces. However, when analyzing nanostructures with dimensions

smaller than the wavelengths, radiation pressure has to be taken into account [161].
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With this Hamiltonian, we can now examine the dynamics of the optical and acoustic

fields in the system. Using the Heisenberg equations of motion

∂

∂t
an(z, t) =

1

i~
[an(z, t), H] ,

∂

∂t
bm(z, t) =

1

i~
[bm(z, t), H] , (2.28)

together with the commutators from Eq. (2.20), we have

∂

∂t
an = −iωnan − vn

∂

∂z
an − i

∑
n′

∑
m

[
gn,n′,m an′bme

i(qm−kn+kn′ )z

+ g∗n′,n,m an′b
†
me
−i(qm−kn′+kn)z

]
,

∂

∂t
bm = −iΩmbm − Vm

∂

∂z
bm − i

∑
n

∑
n′

g∗n′,n,m ana
†
n′ e

−i(qm−kn+kn′ )z,

(2.29)

where we have used the operators from Eq. (2.24), and we suppress the notation of the space

and time arguments (z, t) of the operators for clarity. Next, we will use these equations of

motion to analyze the dynamics of the different types of Brillouin scattering.

2.3.2 Backward stimulated Brillouin scattering

As we have discussed earlier, in the case of Backwards Brillouin scattering, the Stokes

and anti-Stokes processes are mediated by separate phonons and are decoupled, such that

we can analyze them separately. Here, we will focus on the Stokes process; the anti-Stokes

process can be calculated similarly. We consider three fields: a pump propagating in the +z

direction, a Stokes field propagating in the −z direction, and an acoustic field propagating

in the +z direction (see Fig. 2.2(a)). Using Eq. (2.29), we now have

∂

∂t
ap = −iωpap − vp

∂

∂z
ap − i

[
gp,s asb e

i(q−kp−ks)z + g∗s,p asb
† e−i(q+ks+kp)z

]
,

∂

∂t
as = −iωsas + vs

∂

∂z
as − i

[
gs,p apb e

i(q+ks+kp)z + g∗p,s apb
† e−i(q−kp−ks)z

]
,

∂

∂t
b = −iΩ0b− V0

∂

∂z
b− i

[
g∗s,p apa

†
s e
−i(q−kp−ks)z + g∗p,s asa

†
p e
−i(q+ks+kp)z

]
,

(2.30)

where we have a negative group velocity for the Stokes wave, as well as a negative wavevec-

tor, since it is counter-propagating compared to the other fields. From the phase-matching



CHAPTER 2 29

conditions necessary for backward scattering, we know that a Stokes process requires q =

kp + ks, such that

∂

∂t
ap = −iωpap − vp

∂

∂z
ap − i

[
gp,s asb+ g∗s,p asb

† e−2i(ks+kp)z
]
,

∂

∂t
as = −iωsas + vs

∂

∂z
as − i

[
gs,p apb e

2i(ks+kp)z + g∗p,s apb
†
]
,

∂

∂t
b = −iΩ0b− V0

∂

∂z
b− i

[
g∗s,p apa

†
s + g∗p,s asa

†
p e
−2i(ks+kp)z

]
.

(2.31)

The oscillatory terms e±2i(ks+kp)z in these equations will average out when integrated over

a propagation distance z � [2(ks + kp)]−1, and can typically be neglected.

At this point, we will also take into account that the system we are analyzing is an open

system, and we introduce dissipation terms into our equations by adding an imaginary

part to the modes’ frequencies, i.e., ω → ω − i (γ/2) and Ω0 → Ω0 − i (Γ/2). As required

by the fluctuation-dissipation theorem, to maintain thermal equilibrium we must consider

the fluctuations introduced by the thermal bath each mode interacts with [174], which we

denote ζ for the optical fields and η for the acoustic field

∂

∂t
ap = −iωpap −

γp

2
ap − vp

∂

∂z
ap − igp,s asb+ ζp,

∂

∂t
as = −iωsas −

γs

2
as + vs

∂

∂z
as − ig∗p,s apb

† + ζs,

∂

∂t
b = −iΩ0b−

Γ

2
b− V0

∂

∂z
b− ig∗s,p apa

†
s + η.

(2.32)

Next, we analyze the operators in the rotating frame in order to remove their fast

oscillatory component and gain more insight into the field envelopes in their steady-state.

We do this by first factoring out the fast oscillating terms of each operator

ap → ape
−iωpt, as → ase

−iωst, b→ be−iΩt,

ζp → ζpe
−iωpt, ζs → ζse

−iωst, η → ηe−iΩt,

(2.33)
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where Ω = ωp − ωs, followed by setting the time derivative to zero, leaving us with

vp
∂

∂z
ap = −γp

2
ap − igp,s asb+ ζp,

−vs
∂

∂z
as = −γs

2
as − ig∗p,s apb

† + ζs,

V0
∂

∂z
b = −i (Ω0 − Ω) b− Γ

2
b− ig∗s,p apa

†
s + η.

(2.34)

For now, we will neglect the noise terms, as they are not important for the calculation of

the power transfer between the fields in a driven process.

In the case where the spatial decay length of the acoustic field (given by V0/Γ) is much

shorter than the length scale over which the fields propagate, as well as much shorter than

the optical decay length, we can adiabatically eliminate its spatial dynamics. This is a

valid assumption in many systems, where the decay length of the acoustic waves is typically

10–100 µm at room temperature, hence the acoustic field has no ‘spatial memory’ and only

couples to the optical fields locally at each point. More rigorously, we can solve the equation

for the phonon field

b(z) = − i

V0
g∗s,p

∫ z

0
dz′ ap(z′)a†s(z

′) exp

[
−i
(

Ω0 − Ω

V0

)(
z − z′

)]
exp

[
− Γ

2V0

(
z − z′

)]
,

(2.35)

and since the optical fields don’t change much over the decay length V0/Γ, we can pull them

out of the integration

b(z) ≈ − i

V0
g∗s,pap(z)a†s(z)

∫ z

0
dz′ exp

[
−i
(

Ω0 − Ω

V0

)(
z − z′

)]
exp

[
− Γ

2V0

(
z − z′

)]
= −i

(
1

i (Ω0 − Ω) + Γ/2

)
g∗s,pap(z)a†s(z)

(
1− exp

[
−i
(

Ω0 − Ω

V0

)
z

]
exp

[
− Γ

2V0
z

])
≈ −i

(
1

i (Ω0 − Ω) + Γ/2

)
g∗s,pap(z)a†s(z),

(2.36)

where in the last step, we have used the fact that for propagation distances larger than the

acoustic decay length (z � 2V0/Γ) the last term can be dropped8.

8. We can see that this approximation has resulted in the elimination of the spatial derivative of the
acoustic field in Eq. (2.34).



CHAPTER 2 31

Substituting this result back into Eq. (2.34), and denoting the acoustic frequency re-

sponse

χ =
1

i (Ω0 − Ω) + Γ/2
, (2.37)

results in a system of coupled differential equations given by

∂

∂z
ap = − γp

2vp
ap −

1

vp
χ |gp,s|2 asa

†
sap,

∂

∂z
as = +

γs

2vs
as −

1

vs
χ∗ |gp,s|2 apa

†
pas,

(2.38)

which have the same form as other third-order nonlinear optical processes, such as Kerr and

Raman nonlinearities [157]. We can rewrite these equations in terms of optical power [172]

Pp = ~ωpvpa
†
pap, Ps = ~ωsvsa

†
sas, (2.39)

giving us the coupled equations

∂

∂z
Pp = −γp

vp
Pp −GB

(
Γ

2

)2

|χ|2 PsPp,

∂

∂z
Ps = +

γs

vs
Ps −GB

(
Γ

2

)2

|χ|2 PpPs,

(2.40)

where we have defined the Brillouin gain [172]

GB =
4 |gp,s|2

~ωpvpvsΓ
, (2.41)

which has units of [power−1 · length−1] and is a useful measure of the Brillouin interaction

strength, equivalent to the gain we introduced earlier in Eq. (2.11).

In many practical systems, the pump field is much stronger than the Stokes field (as is

the case of an amplifier for example), and we can approximate the pump as having constant

power, known as the undepleted pump approximation. In this case, we can solve Eq. (2.40)
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Figure 2.5: Optical power evolution for different types of Brillouin scattering processes. (a)
Stimulated backward Brillouin scattering, following Eq. (2.40), showing the power transfer
from the pump wave to a counter-propagating Stokes wave. (b) In a stimulated forward
inter-modal scattering process, energy is transferred from the pump to a co-propagating
Stokes wave, following Eq. (2.47). (c) Stimulated forward intra-modal scattering shows very
different spatial dynamics, with multiple optical tones appearing as the field propagates,
which can be described as a form of self-phase modulation. In all three calculations, we
assume GB = 5 and optical losses were neglected.

to find the power evolution of the Stokes wave

Ps(z) = Ps(L) exp

[
−γs

vs
(L− z)

]
exp

[(
Γ

2

)2

|χ|2 GBPp (L− z)

]
, (2.42)

where we have assumed an active-Brillouin waveguide of length L. We can see that the

Stokes wave experiences exponential amplification as it propagates. Fig. 2.5(a) shows a

calculation of the optical power evolution of the optical fields, where we can see the power

transfer from the pump to the Stokes wave.
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Spontaneous backward Brillouin scattering

Next, we will analyze the contribution of the thermal fluctuations in the acoustic mode,

which lead to spontaneous scattering of pump light to the Stokes tone. We return to Eq.

(2.32), now keeping the stochastic term modeling the acoustic mode fluctuations. For sim-

plicity, we will neglect optical loss and we assume the undepleted pump regime. We model

the thermal fluctuations as a random variable with zero mean, 〈η(z, t)〉 = 0, a correlation

function 〈η†(z, t)η(z′, t′)〉 = nthΓδ(t − t′)δ(z − z′), and a commutator [η(z, t), η†(z, t)] = 1

[172]. We have denoted nth as the average number of thermally excited phonons at the

Brillouin frequency, following a Bose-Einstein distribution nth = [exp (~Ω0/kBT ) − 1]−1,

where kB is the Boltzmann constant and T the temperature.

We transform the equations into the rotating frame (Eq. (2.33)), and neglect the spatial

derivative of the phonon field (see Eq. (2.36)), leaving us with

∂

∂t
as = vs

∂

∂z
as − ig∗p,s apb

†,

∂

∂t
b = −i(Ω0 − Ω)b− Γ

2
b− ig∗s,p apa

†
s + η.

(2.43)

By writing the equations in the frequency domain (using a Fourier transform ∂t → −iω),

we have

−iωas = vs
∂

∂z
as − ig∗p,s apb

†,

b = χ̃
(
−ig∗s,p apa

†
s + η

)
,

(2.44)

where χ̃ = [i(Ω0 − Ω− ω)]−1. Solving for the Stokes tone leaves us with

as(z, ω) =

∫ L

0
dz

i

vs
g∗apη

†χ̃∗ exp

[
−i
vs
ω − 1

vs
|g|2 |ap|2 χ̃ (L− z)

]
, (2.45)

where we have assumed no Stokes light at the input, i.e., as(0, ω) = 0, as we are only

interested in spontaneous scattering. The power spectral density of the scattered light
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Ss(ω) = ~ωsvs〈a†s(L, ω)as(L, ω)〉 is given by

Ss(ω) = ~ωs (nth + 1)

(
exp

[
GBPpL

(Γ/2)2

(Ω0 − Ω− ω)2 + (Γ/2)2

]
− 1

)
, (2.46)

where we have expressed the spectrum in terms of the Brillouin gain and pump power

using Eqs. (2.39) and (2.41). The total scattered optical power is given by integrating

the spectrum Ps = 1/(2π)
∫
dωSs(ω). The same analysis can be performed for anti-Stokes

spontaneous scattering, yielding a similar result with (nth + 1) → nth. The lineshape we

have obtained in Eq. (2.46) can be approximated as a Lorentzian when the Brillouin

interaction is weak (GBPpL � 1) and as a Gaussian for strong interactions. Additionally,

at a high temperature or low Brillouin frequency (when ~Ω0 � kBT ) the thermal occupation

number can be approximated as nth = kBT/~Ω0, such that Ss ∝ kBTωs/Ω0.

For strong enough interactions, the Stokes scattered light can initiate a stimulated pro-

cess. For example, in situations where we have large Brillouin gain, spontaneously scattered

Stokes photons can seed the Brillouin amplification process [157,158]. If the Brillouin gain

reaches a critical value (typically when GBPpL ∼30 [157,175]), this can lead to appreciable

energy transfer between the pump and Stokes fields. Furthermore, this mechanism can

cascade to further red-shifted Stokes tones [149].

2.3.3 Forward inter-modal stimulated Brillouin scattering

Next, we analyze the case of inter-modal Brillouin scattering between two optical waves

co-propagating in two different spatial or polarization modes. This case is reminiscent of

the backward Brillouin process, and we can rely on many of the calculations we have already

done, with the difference that now all fields, optical and acoustic, are co-propagating in the

+z direction (for the Stokes scattering process). Following the same steps as before, taking

into account the relevant phase-matching conditions for forward inter-modal scattering (i.e.,
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qs(Ωs) = k1(ωp)− k2(ωs)), we arrive at

∂

∂z
ap = − γp

2vp
ap −

1

vp
χ |gp,s|2 asa

†
sap,

∂

∂z
as = − γs

2vs
as +

1

vs
χ∗ |gp,s|2 apa

†
pas.

(2.47)

These equations are equivalent to Eq. (2.38), with a positive group velocity for the Stokes

wave, as it is co-propagating with the pump. In this case, under the undepleted pump

approximation, the Stokes power is given by

Ps(z) = Ps(0) exp

[
−γs

vs
z

]
exp

[(
Γ

2

)2

|χ|2GBPpz

]
, (2.48)

showing exponential growth, similar to the backward Brillouin case. Fig. 2.5(b) shows the

calculated power evolution of the optical fields, demonstrating how most of the pump power

can be transferred to the Stokes wave. Comparing with the backward Brillouin case in Fig.

2.5(a) shows the difference in the power distribution over the propagation length. Whereas

in the backward case, both pump and Stokes fields had the highest power at z = 0, in the

forward inter-modal case the Stokes wave power grows as it propagates, while the pump is

depleted. In fact, if we neglect optical loss, the total optical power does not change along

the waveguide as it is transferred from pump to Stokes, i.e., ∂z[Pp(z) + Ps(z)] = 0.

Analyzing the spontaneous scattering in an inter-modal Brillouin interaction follows the

same steps as we have derived in the backward Brillouin case (see Eqs. (2.43)–(2.46)), and

will also result in exponential amplification of the noise [56].

2.3.4 Forward intra-modal stimulated Brillouin scattering

The dynamics of forward intra-modal Brillouin scattering —where all optical waves co-

propagate in the same optical mode— are very different from the backward and inter-modal

cases we have just seen. In the intra-modal case, the same Brillouin-active phonon couples to

both Stokes and anti-Stokes fields, and we cannot only take into account two optical fields in

our analysis (such as we have done earlier with the pump and Stokes waves). Additionally,

the same phonon can scatter light into further red- and blue-shifted sidebands, as seen in
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Fig. 2.4. As we will show in this section, this leads to a form of Brillouin-induced self-phase

modulation, with vastly different characteristics compared to the previous cases we have

analyzed. This analysis will also be the basis for the next chapters, where we will show

how the unique properties of forward intra-modal scattering can be utilized for processing

signals within photonic devices.

To fully capture the dynamics of the electric and acoustic fields in this system, we use

Eq. (2.29), keeping multiple optical modes in our analysis, all interacting with a single

phonon mode. In this case, all of the optical modes (indexed n) lie on the same dispersion

curve, which we assume is linear within the spectral region of interest. Adjacent modes will

couple through the Brillouin process, i.e., gn,n′,m = gnδn,n′+1 + gn+1δn,n′−1, leaving us with

∂

∂t
an = −iωnan − vn

∂

∂z
an − i

[
gn an−1b e

i(q−kn+kn−1)z + gn+1 an+1b e
i(q−kn+kn+1)z

+ g∗n an−1b
† e−i(q−kn−1+kn)z + g∗n+1 an+1b

† e−i(q−kn+1+kn)z
]
,

∂

∂t
b = −iΩ0b− V0

∂

∂z
b− i

∑
n

[
gnana

†
n−1 e

−i(q−kn+kn−1)z + gn+1 ana
†
n+1 e

−i(q−kn+kn+1)z
]
.

(2.49)

Keeping only the phase-matched terms (q = kn − kn−1), we have

∂

∂t
an = −iωnan − vn

∂

∂z
an − i

[
gn an−1b+ g∗n+1 an+1b

†
]
,

∂

∂t
b = −iΩ0b− V0

∂

∂z
b− i

∑
n

g∗n ana
†
n−1,

(2.50)

showing the contributions from multiple stokes and anti-Stokes scattering processes, occur-

ring between all neighboring optical modes.

As we did in our earlier Brillouin scatting analyses, we remove the spatial derivative

from the equation describing the phonon field using adiabatic elimination (see Eq. (2.36)).

Furthermore, the phonon mode is practically at its cut-off frequency, with a vanishing

wavevector and close-to-zero group velocity (V0 → 0) [44], as illustrated in the acoustic

dispersion diagram in Fig. 2.4, hence the spatial-derivative term can easily be neglected.

To find the steady-state spatial evolution of the field envelopes, we follow the same steps
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as Eqs. (2.31)–(2.38), arriving at

∂

∂z
an = − γn

2vn
an −

i

vn

[
gn an−1b+ g∗n+1 an+1b

†
]
,

b = −iχ
∑
n

g∗n ana
†
n−1,

(2.51)

where we have again denoted the acoustic frequency response χ (Eq. (2.37)) and the optical

loss of the optical waves γn. To simplify our analysis, we drop the optical loss terms (a valid

approximation for low-loss, short devices), and assume that all optical coupling rates and

group velocities are equal, i.e., vn = v and gn = g for all n, which is a good approximation

as the Brillouin frequency shifts are orders-of-magnitude smaller than the optical frequency

scale, hence all optical modes have similar optical properties.

At this point, it is useful to examine how the phonon field evolves in space, by calculating

the spatial derivative

∂

∂z
b = −iχg∗

∑
n

[(
∂zan

)
a†n−1 + an

(
∂za
†
n−1

)]
=
i

v
χg∗

∑
n

[(
g an−1b+ g∗ an+1b

†
)
a†n−1 − an

(
g∗ a†n−2b

† + g a†nb
)]

=
i

v
χg∗

∑
n

[
g b
(
|an−1|2 − |an|2

)
− g∗ b†

(
an+1a

†
n−1 − ana

†
n−2

)]
= 0.

(2.52)

We can see that the spatial derivative is zero when we sum over all of the optical modes, such

that the acoustic mode envelope is constant in space. Hence, we can evaluate the phonon

field at any point, and we can do so at the waveguide input (z = 0) where we know the values

of the optical fields. Intuitively, we can think of the phonon creation and annihilation rates

balancing each other, leading to a steady state. This result teaches us that in the limit of

small optical dissipation, the magnitude of the phonon field remains stationary throughout

the waveguide. Furthermore, the phonon field amplitude is a reflection of the magnitude

of the local forcing function, since the phonons decay within a very short length (see Eq.

(2.36)). This shows us that in essence, the forcing field produced by light remains unchanged

along the length of the waveguide, despite the spectral evolution of the optical field as it

propagates.
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To draw some further insights from this results we consider the dynamics produced for

an input pump and Stokes fields, with indices n = 0 and n = −1, and using Eq. (2.51) we

have

∂

∂z
an = −1

v
|g|2

[
an−1χa0(0)a†−1(0)− an+1χ

∗a†0(0)a−1(0)
]
,

b = −iχg∗ a0(0)a†−1(0).

(2.53)

We see that the Brillouin interaction has the form of a χ(3) nonlinear optical process, such

as four-wave mixing [157]. Rearranging Eq. (2.53), we have

∂

∂z
an = −1

v
|g|2 |χ| |a0(0)a−1(0)|

[
an−1e

i(φ+Λ) − an+1e
−i(φ+Λ)

]
, (2.54)

where we have defined the relative phase between the two tones at the input using Λ =

arg(a
(A)
−1

†
(0)a

(A)
0 (0)), and the phase of the frequency response is denoted φ = arg(χ). This

differential equation has the solution

an(z) = a0(0)J−n (ξ z) ei(φ+Λ)n + a−1(0)J−(n+1) (ξ z) ei(φ+Λ)(n+1), (2.55)

where Jn(·) denotes the nth order Bessel function. We have defined the parameter ξ =

GB(P
(A)
0 P

(A)
−1 )1/2(Γ/2)|χ|, using Eqs. (2.39) and (2.41) to express the fields in terms of

input optical power and Brillouin gain (more details of this derivation can be found in

Section 3.2). We can see that even though there were only two tones at the input of the

system, multiple sidebands appear through the forward Brillouin process, as seen in Fig.

2.5(c).

The spectral evolution of the otical felds can be seen as a form Brillouin-driven self-phase

modulation. We can show this by reintroducing the fast oscillating terms to the operators
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we have derived, and calculating the total field amplitude by summing all optical tones

s(z, t) ∝
∑
n

an(z)e−i(ω0+nΩ)t

=

(
a0(0)e−iω0t + a−1(0)e−i(ω0−Ω)t

)
︸ ︷︷ ︸

input fields

exp

[
i
Γ

2
|χ|GB

√
P0P−1 z sin

(
Ωt− (φ+ Λ)

)]
︸ ︷︷ ︸

phase modulation

.

(2.56)

Examining the optical power (as would be measured by a photodetector) yields

|s(z, t)|2 ∝ P0 + P−1 + 2
√
P0P−1 cos (Ωt− Λ), (2.57)

revealing that the optical power within the system is not varying in space and that the

Brillouin scattering process does not affect the intensity beat note between the two tones

at the device input.

At this stage, it is useful to examine small-signal optical amplification produced by

forward intra-modal scattering to compare it with other Brillouin processes. We begin

by using Eq. (2.55) to write the exact solution valid for all powers (i.e., including pump

depeltion). The gain experienced by a Stokes signal (n = −1) as it propagates through the

device along with a strong pump wave (n = 0) is given by

a−1(z) = a−1(0)

(∣∣∣∣ a0(0)

a−1(0)

∣∣∣∣ J1 (ξz) e−iφ + J0 (ξz)

)
, (2.58)

and in terms of optical powers Pn ∝ |an|2 this yields

P−1(z) = P−1(0)

∣∣∣∣∣
√

P0(0)

P−1(0)
J1 (ξz) e−iφ + J0 (ξz)

∣∣∣∣∣
2

. (2.59)

To explore the small-signal limit, we assume that (ξz) � 1, which is consistent with the

undepleted pump approximation. By expanding the Bessel functions to first order (J0(x) ≈
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1, J1(x) ≈ x/2), we have

P−1(z) = P−1(0)

∣∣∣∣1 +
1

2
GBP0

Γ

2
χz

∣∣∣∣2 . (2.60)

We see that the gain experienced by the small Stokes signal grows quadratically with Bril-

louin gain, pump power, and propagation length. This is in contrast with the exponential

amplification we saw for Backward and inter-modal Brillouin scattering (see Eqs. (2.42)

and (2.48)), which can also be seen in Fig. 2.5.

When examining the spectral evolution using normalized mode amplitudes (that repre-

sent photon number density), our result looks like a phase-modulation process that conserves

photon number (Eq. (2.56)). However, when expressing the fields as optical power, we see

that it is a nonconservative process, in which the phonon field represents a loss channel

that dissipates energy from the system. We can see this by summing the optical power in

all optical waves, taking into account the different frequencies of each tone, following Eq.

(2.39)

Ptot(z) = ~v
∑
n

(ω0 + nΩ) |an(z)|2 , (2.61)

and plugging in the mode amplitudes from Eq. (2.55)

Ptot(z) = ~ω0v |a0(0)|2 + ~ (ω0 − Ω) v |a−1(0)|2︸ ︷︷ ︸
Ptot(0)

− Ω

ω0
GBP0P−1z

Γ

2
Re (χ) [1− (Ω/ω0)]−1/2︸ ︷︷ ︸
redshift

.

(2.62)

The first two terms are the power of the tones at the input (pump and Stokes, respectively),

and the third term reveals a redshift, scaling linearly with the propagation length z. We

can also express this redshift in terms of the number of phonons in the system and the

Brillouin gain by using Eqs. (2.41) and (2.53), resulting in

Ptot(z) = Ptot(0)− ~Ω |b|2 Γz︸ ︷︷ ︸
redshift

, (2.63)

where we have used Re (χ) = (Γ/2)|χ|2 for χ = [i(Ω0 − Ω) + Γ/2]−1. We can now see that
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the redshift can be described as the energy in the phonon field (~Ω |b|2) with a constant

dissipation rate Γ over a length z. This redshift can also be seen in Fig.(2.5)(c), showing

higher optical power in the lower sidebands (rather than symmetric scattering to both upper

and lower sidebands). Interestingly, since the phonon number is larger for high-Q acoustic

modes (|b|2 ∝ Γ−2) the redshift is inversely proportional to the dissipation rate Ptot ∝ Γ−1.

This effect is very small, as seen from the factor Ω0/ω0 for the redshift term in Eq. (2.62),

which is typically on the order of ∼10−5. We note, that this analysis is consistent with

previous studies as well as an experimental demonstration in optical fiber [29,176].

Spontaneous forward Brillouin scattering

Finally, we turn to analyze spontaneous forward intra-modal Brillouin scattering, which is

qualitatively different than the backward and inter-modal cases. We will assume a strong

pump tone (with amplitude ap) at the input of a forward Brillouion-active medium, and

analyze the scattering to the Stokes (as) and anti-Stokes sidebands (aas). As we did earlier,

we will treat the pump as constant (undepleted) and we will also neglect scattering to

higher-order sidebands. Using Eq. (2.50), and introducing a stochastic term η describing

the fluctuations of the phonon mode, we have

∂

∂t
as = −vs

∂

∂z
as − ig∗p,s apb

†,

∂

∂t
aas = −vas

∂

∂z
aas − igas,p apb,

∂

∂t
b = −i (Ω0 − Ω) b− i

(
g∗p,sapa

†
s + g∗as,paasa

†
p

)
+ η.

(2.64)

Solving for the Stokes field yields [172,175]

as(L, t) = − i

vs
g∗ap

∫ t

0
dt′
∫ L

0
dzη†(z, t′) exp

[
−Γ

2

(
t− t′

)]
, (2.65)

where we have assumed equal coupling rates to the Stokes and anti-Stokes sidebands (g∗p,s =

g∗as,p = g). We can calculate the spectral density of spontaneous scattering using the
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Wiener–Khinchin theorem

Ss(ω) = lim
t→∞

~ωsvs

∫
dt′〈a†s(L, t+ t′)as(L, t)〉e−iωt

′
, (2.66)

resulting in [172]

Ss(ω) = ~ω (nth + 1)GBPpL
(Γ/2)2

(Ω0 − Ω− ω)2 + (Γ/2)2 , (2.67)

showing a Lorentzian lineshape. As we have see earlier, the total scattered optical power can

be calculated by integrating this spectrum Ps = 1/(2π)
∫
dωSs(ω), and similar expressions

can be derived for anti-Stokes spontaneous scattering (the result is similar, with (nth +1)→

nth). We see that there is no exponential amplification in this case, and the scattered field

shows linear growth with device length and pump power. Interestingly, noise cannot initiate

a stimulated process through forward intra-modal scattering [172]. One way to interpret

this result is that phonons created in the Stokes process are annihilated in the anti-Stokes

interaction, and cannot build up energy to provide feedback. This is also consistent with

the fact that forward Brillouin scattering results in phase modulation, rather than energy

transfer and amplification.

2.4 Conclusion

In this chapter, we have presented the theory of Brillouin scattering and analyzed the

necessary phase-matching and energy-conservation conditions for such processes. We have

seen how the presence of acoustic fields in a medium can result in light scattering, through

photoelastic and moving-boundary effects, resulting in Stokes (red-shifted) and anti-Stokes

(blue-shifted) processes. In a stimulated scattering process, we have shown how optical

forces, namely electrostriction and radiation pressure, can drive the acoustic fields, leading

to an overall third-order (χ(3)) optical nonlinearity.

Using a Hamiltonian framework, we have examined different geometries of Brillouin scat-

tering, namely Backward, forward inter-modal, and forward intra-modal processes, which
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have vastly different properties. We have seen how forward intra-modal scattering results in

a form of self-phase modulation, while backward and inter-modal scattering showed expo-

nential power transfer between two optical tones. Understanding the dynamics produced by

the different types of Brillouin scattering processes will become important when we utilize

such effects within photonic devices. For example, in later chapters we will see how for-

ward intra-modal scattering can be utilized to produce multi-pole narrowband filters, while

the unique phase-matching conditions necessary for inter-modal scattering can be used to

achieve nonreciprocal optical transmission.

The formalism presented here will be the basis for further analysis, where we will proceed

to study more complex photonic systems that utilize Brillouin scattering to perform signal-

processing operations. Additionally, the spontaneous scattering processes we have described

here can be a source of noise in many Brillouin-based applications, and their analysis will be

important when trying to examine the practical and fundamental limits of Brillouin-based

technologies.
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Nonlocal forward Brillouin interactions

3.1 Introduction

Optical nonlinear processes such as four-wave mixing and harmonic generation are usually

described in terms of a spatially local susceptibility. Namely, the optical fields in one

location do not alter the nonlinear response in another point in space [157]. In Raman

scattering, for example, the short mean free path of the THz-frequency optical phonons

participating in the nonlinear process also results in a local susceptibility. By comparison,

nonlocal nonlinearities require a mechanism by which the optical fields in one location affect

the optical response in another location. Nonlocal response has been studied in the context

of thermally induced effects [177–179], as well as more exotic systems such as nematic liquid

crystals [180], trapped atoms [181], Rydberg gases [182], plasmonic systems [183,184], and

graphene [185]. All of these interactions are the result of transport mechanisms, such as heat,

electric charge, or atoms, which mediate the optical response over an extended distance.

The acoustic phonons that participate in a Brillouin scattering process can also mediate

long-range interactions. These elastic modes can be long-lived and propagate many optical

wavelengths before decaying, yielding nonlocal dynamics [44, 64, 168]. This acousto-optic

coupling is a three-wave mixing process producing a coherent interaction of optical waves

and acoustic phonons [35, 157, 173]. More specifically, in a forward Brillouin scattering

44
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process, the optical fields are co-propagating, while the phonons produced by the scattering

process are emitted perpendicular to the direction of optical wave propagation [44, 63, 64].

The transverse nature of the phonons, combined with their long lifetime, enables them to

explore a space that is much larger than the acousto-optic overlap region [44]. This allows

the design of structures where the acoustic fields extend the distance between distinct optical

guided waves, which are otherwise optically decoupled [186,187].

Such nonlocal Brillouin interactions have been recently demonstrated both in optical

fiber and in chip-scale photonic devices. In multi-core fibers, light propagating within

spatially distinct cores can be coupled to acoustic modes occupying the entire fiber cross-

section [188]. By comparison, integrated photonic systems allow additional structural de-

grees of freedom which can be used to tailor both the optical and acoustic modes that

participate in the nonlocal interaction [186]. Devices utilizing these interactions can be the

basis for new signal processing schemes such as filters [187], oscillators [189], and modula-

tors [139], for both optical and microwave applications.

In this chapter, we analyze these nonlocal interactions in the context of Brillouin-active

superstructures supporting acoustic modes extending multiple optical waveguides. Because

the phonon mode participating in the Brillouin interaction has an overlap with multiple

optical fields, the scattering processes in the different waveguides are no longer independent.

Hence, the light scattering in one waveguide will affect the dynamics in another, resulting in

a nonlocal susceptibility between the two spatially separated waveguides. We show that the

intensity envelope of light propagating in one waveguide of the device results in pure phase

modulation of light in a spatially separate optical guided wave, determined by the acoustic

and optical properties of both waveguides, revealing the nonlocal nature of the interaction.

We further extend our analysis to the case of multiple acoustic modes participating in the

acousto-optic process and show that coupling multiple acoustic modes results in phonon

‘super-modes’, all occupying the extended space and interacting with the optical fields. The

coherent interference of these phonon super-modes yields a multi-pole frequency response

for the nonlocal susceptibility, showing a faster frequency roll-off compared to the typical

Lorentzian lineshape of a single acoustic resonance.
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a b

c

d
Forward SBS Backward SBS

Figure 3.1: (a) Dispersion diagrams of an optical mode in each of the two waveguides. The
phonon coupling between optical tones (green arrow) is phase-matched in both waveguides.
The phonon couples multiple tones spaced by frequency Ω0, as long as the dispersion relation
is linear. Bottom inset: The acoustic dispersion diagram, illustrating the acoustic mode
taking part in the interaction is near its cutoff frequency with a vanishing axial wavevector.
Top inset: A schematic illustration of the system, where two guided optical modes are both
coupled to an extended acoustic mode. (b) Left: An illustration of a multi-core optical
fiber, where optical modes are spatially separated (orange), and a transverse acoustic mode
(green) is supported by the entire cladding cross-section, such as described in Ref. [188].
Right: An illustration of a chip-scale device with two optical waveguides, each supporting an
optical mode (orange), and a single spatially-extended acoustic mode (green), as discussed
in Refs. [139,187]. (c) Energy level diagram illustrating two optical tones in each waveguide
interacting with a spatially extended nonlocal acoustic mode. (d) Schematic comparison
between forward and backward Brillouin processes. In a forward geometry, the transverse
nature of the acoustic modes enables them to explore a large space, extending well beyond
the acousto-optic overlap region, whereas in a backward process utilizing a bulk acoustic
mode, the acoustic and optical waves are confined to a similar space. Reproduced from
Ref. [154]
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3.2 Theoretical analysis

We begin our analysis by considering an optomechanical system consisting of two indepen-

dent optical waveguides that also supports a single guided acoustic mode. While the two

waveguides are optically decoupled, the light in each waveguide is acousto-optically coupled

to the acoustic mode through a forward stimulated Brillouin scattering (FSBS) process.

We assume that all of the optical fields are co-propagating and that the photon-phonon

coupling is a consequence of electrostrictive forces and radiation pressure [161, 171], which

can be tailored through the design of the device geometry [44,162]. Examples of chip-scale

and fiber-based device geometries that can produce such interactions are illustrated in Fig.

3.1(b).

The FSBS process in each of the waveguides can be described as a three-wave interaction

involving two photons and a phonon, as illustrated in the phase-matching diagrams in Fig.

3.1(a). As we have seen in Chapter 2, the phase-matching condition required in both

waveguides is q(Ω0) = k(ω0) − k(ω−1), where k(ω) is the optical wavevector at optical

frequencies ω0 and ω−1, and q(Ω0) is the wavevector of the acoustic wave at frequency

Ω0. Since the optical waves have similar wavevectors, this requires a cut-off phonon mode,

with a vanishing axial wavevector, such that the acoustic wave is nearly perpendicular to

the direction of the optical wave propagation [29, 163, 172]. The transverse nature of these

phonons enables them to extend much further than the optical waveguide cross-section. This

is in contrast with backward-Brillouin scattering processes utilizing bulk acoustic modes,

where the phonon typically occupies a similar region as the optical waves, as illustrated in

Fig. 3.1(d). The wavelengths of the light in the two optical waveguides, which we denote A

and B, can be different as long as energy is conserved in the process, as seen in Fig. 3.1(c).

This requires ~Ω0 = ~ω(A)
0 −~ω(A)

−1 and ~Ω0 = ~ω(B)
0 −~ω

(B)
−1 , such that the phonon frequency

matches the frequency difference of the two optical tones in both waveguides. Additionally,

phase matching and energy conservation together require that the optical modes in both

waveguides have similar optical group velocities [44].

As was discussed in Chapter 2, in the absence of strong optical dispersion, an FSBS



CHAPTER 3 48

process enables light to be cascaded to multiple optical frequencies [29,64,170,172], and we

describe the optical fields in each waveguide as a sum of discrete tones with field amplitude

an that are spaced by frequency Ω such that ωn − ωn−1 = Ω. Building on the analysis

of forward Brillouin scattering from Section 2.3.4, we write a Hamiltonian describing two

optical waveguides, which are both coupled to a single acoustic mode. We can separate the

Hamiltonian into terms describing the optical fields in each waveguide, the acoustic field,

and the acousto-optic interactions in each waveguide

H = H
(A)
opt +H

(B)
opt +Hac +H

(A)
int +H

(B)
int . (3.1)

We denote the steady-state optical field amplitudes in the two waveguides as a
(A)
n and

a
(B)
n with frequencies ω

(A)
n and ω

(B)
n , and the steady-state acoustic field amplitude as b,

with an acoustic dissipation rate Γ. We assume a constant optical group velocity over the

frequency range of interest, such that the optical tones can cascade to an arbitrary number

of sidebands. Following the discussion in Section 2.3.4, the different terms are given by

H
(A)
opt =

∑
n

~
∫
dz a(A)

n

†
(z)ω̂(A)

n a(A)
n (z),

H
(B)
opt =

∑
n

~
∫
dz a(B)

n

†
(z)ω̂(B)

n a(B)
n (z),

Hac = ~
∫
dz b†(z)Ω̂0b(z),

H
(A)
int =

∑
n

~
∫
dz g(A)

n

∗
a(A)
n (z)a

(A)
n−1

†
(z)b†(z)e−i∆k

(A)
n z + H.C.,

H
(B)
int =

∑
n

~
∫
dz g(B)

n

∗
a(B)
n (z)a

(B)
n−1

†
(z)b†(z)e−i∆k

(B)
n z + H.C.,

(3.2)

where ∆k
(A)
n = q0 − (k

(A)
n − k

(A)
n−1) and ∆k

(B)
n = q0 − (k

(B)
n − k

(B)
n−1) describe the phase

mismatch between the phonon and the photons in each of the two waveguides. We assume

each waveguide supports a single optical spatial mode, and the index n sums over all optical

tones coupled through the acousto-optic interaction. The coupling rate g can have both

photo-elastic and radiation pressure components, which can be evaluated using Eq. (2.27).

We can readily explore the dynamics of the acoustic field from the total Hamiltonian
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H, using the Heisenberg equations of motion

∂

∂t
a(A)
n (t) =

1

i~

[
a(A)
n (t), H

]
,

∂

∂t
a(B)
n (t) =

1

i~

[
a(B)
n (t), H

]
,

∂

∂t
b(t) =

1

i~
[b(t), H] .

(3.3)

Using the commutation relations

[
a(A)
n (z, t), a(A)

m

†
(z′, t)

]
= δ

(
z − z′

)
δn,m,[

a(B)
n (z, t), a(B)

m

†
(z′, t)

]
= δ

(
z − z′

)
δn,m,

[
a(A)
n (z, t), a(B)

m

†
(z′, t)

]
= 0,[

b(z, t), b†(z′, t)
]

= δ
(
z − z′

)
,

(3.4)

we find

∂

∂t
a(A)
n = −iω̂na(A)

n − i
(
g(A)
n a

(A)
n−1be

i∆k
(A)
n z + g(A)∗

n+1a
(A)
n+1b

†e−i∆k
(A)
n+1z

)
,

∂

∂t
a(B)
n = −iω̂na(B)

n − i
(
g(B)
n a

(B)
n−1be

i∆k
(B)
n z + g

(B)*
n+1 a

(B)
n+1b

†e−i∆k
(B)
n+1z

)
,

∂

∂t
b = −iΩ̂0b− i

∑
n

(
g(A)
n

∗
a(A)
n a

(A)
n−1

†
e−i∆k

(A)
n z + g(B)*

n a(B)
n a

(B)
n−1

†
e−i∆k

(B)
n z

)
.

(3.5)

For brevity of notation, we have suppressed the arguments (z, t) for all operators.

We keep the dispersion operators to first order for the optical and acoustic fields, ω̂n ≈

ωn − ivn∂z, Ω̂0 ≈ Ω0 − ivac∂z, and add the phonon dissipation by including an imaginary

part to the acoustic frequency, Ω0 → Ω0 − i (Γ/2). At this stage, it is convenient to rewrite

the equations in the rotating frame by factoring out the fast oscillating terms an → ane
−iωnt

and b→ be−iΩt (where Ω = ωn − ωn−1), which results in

∂

∂t
a(A)
n + v(A)

n

∂

∂z
a(A)
n = −i

(
g(A)
n a

(A)
n−1be

i∆k
(A)
n z + g

(A)
n+1

∗
a

(A)
n+1b

†e−i∆k
(A)
n+1z

)
,

∂

∂t
a(B)
n + v(B)

n

∂

∂z
a(B)
n = −i

(
g(B)
n a

(B)
n−1be

i∆k
(B)
n z + g

(B)
n+1

∗
a

(B)
n+1b

†e−i∆k
(B)
n+1z

)
,

∂

∂t
b+ vac

∂

∂z
b = −i (Ω0 − Ω− iΓ/2) b

− i
∑
n

(
g(A)
n

∗
a(A)
n a

(A)
n−1

†
e−i∆k

(A)
n z + g(B)

n

∗
a(B)
n a

(B)
n−1

†
e−i∆k

(B)
n z

)
.

(3.6)

In the case of forward Brillouin scattering (FSBS) the phonon field b(z) is close to its
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cut-off frequency, as illustrated in Fig. 3.1(a), with a small axial wavevector and vanishing

group velocity1 [172], such that we can set vac → 0. We further assume that the optical

mode has a constant group velocity in the frequency range of interest for each of the two

waveguides, equivalent to no optical group velocity dispersion (GVD), such that vn = v and

∆kn = ∆k = 0 [162,172]. We also set the optomechanical coupling rates to be equal for all

of the optical frequencies, gn = g, a valid assumption since the optical field properties do

not change much over the acoustic frequency range. The steady-state phonon field envelope

now has the form

b = −iχ
∑
n

(
g(A)∗a(A)

n a
(A)
n−1

†
+ g(B)∗a(B)

n a
(B)
n−1

†
)
, (3.7)

where we have denoted the frequency response of the acoustic field

χ =
1

i (Ω0 − Ω) + Γ/2
, (3.8)

and the optical fields envelopes are given by

∂

∂z
a(A)
n = − i

v(A)

(
g(A)a

(A)
n−1b+ g(A)∗a

(A)
n+1b

†
)
,

∂

∂z
a(B)
n = − i

v(B)

(
g(B)a

(B)
n−1b+ g(B)∗a

(B)
n+1b

†
)
.

(3.9)

Calculating the spatial derivative of the phonon field in Eq. (3.7) results in

∂

∂z
b = −iχ

∑
n

[
g(A)∗∂a

(A)
n

∂z
a

(A)
n−1

†
+g(A)∗a(A)

n

∂a
(A)
n−1

†

∂z

+ g(B)∗∂a
(B)
n

∂z
a

(B)
n−1

†
+ g(B)∗a(B)

n

∂a
(B)
n−1

†

∂z

]
,

(3.10)

1. For example, in real-world systems with an acoustic quality factor Q ∼1000, the phonons decay after
traveling a distance of ∼10 nm [44]. This implies that negligible phonon transport occurs over the lifetime
of the mode, and we can view the phonon as localized with respect to the direction of propagation.
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and substituting into Eq. (3.9)

∂

∂z
b = −χ

∑
n

[
g(A)∗

(
g(A)b

(∣∣∣a(A)
n−1

∣∣∣2 − ∣∣∣a(A)
n

∣∣∣2)+ g(A)∗b†
(
a

(A)
n+1a

(A)
n−1

†
− a(A)

n a
(A)
n−2

†
))

+

g(B)∗
(
g(B)b

(∣∣∣a(B)
n−1

∣∣∣2 − ∣∣∣a(B)
n

∣∣∣2)+ g(B)∗b†
(
a

(B)
n+1a

(B)
n−1

†
− a(B)

n a
(B)
n−2

†
))]

= 0,

(3.11)

we can see how the spatial derivative vanishes when we sum over all n for which the field

operators are non-zero. Hence, the phonon field is constant in space and can be determined

by its value at z = 0

b = −iχ
∑
n

(
g(A)∗a(A)

n

†
a

(A)
n+1 + g(B)∗a(B)

n

†
a

(B)
n+1

)∣∣∣∣
z=0

. (3.12)

Next, to study the dynamics of the system, we analyze the effect of light scattering in

waveguide A on the spectral evolution of a separate optical wave propagating in waveguide

B. To do this, we assume two tones in the input of waveguide A at frequencies ω
(A)
0 and

ω
(A)
−1 = ω

(A)
0 −Ω, with amplitudes a

(A)
0 and a

(A)
−1 , which will drive the acoustic mode through

a forward-Brillouin interaction, as seen from Eq. (3.12). Assuming a single tone in the

input of waveguide B, the second term of Eq. (3.12) does not contribute, and we are left

with

b = −iχg(A)∗a
(A)
−1

†
(0) a

(A)
0 (0). (3.13)

Substituting into Eq. (3.9) yields the spatial evolution of the optical fields

∂

∂z
a(A)
n = − 1

v(A)

∣∣∣g(A)
∣∣∣2 [a(A)

n−1χa
(A)
−1

†
(0)a

(A)
0 (0)− a(A)

n+1χ
∗a

(A)
−1 (0)a

(A)
0

†
(0)

]
,

∂

∂z
a(B)
n = − 1

v(B)

[
g(B)g(A)*a

(B)
n−1χa

(A)
−1

†
(0)a

(A)
0 (0)− g(B)*g(A)a

(B)
n+1χ

∗a
(A)
−1 (0)a

(A)
0

†
(0)

]
.

(3.14)

To understand the nonlinear susceptibility produced by the forward-Brillouin process

we examine the small-signal limit, by focusing on the dynamics of the n = −1 tone in each
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waveguide (i.e., the Stokes wave). Neglecting higher-order (|n| ≥ 2) tones, we have

∂

∂z
a

(A)
−1 = iγ(A)a

(A)
0 a

(A)
−1 (0)a

(A)
0

†
(0),

∂

∂z
a

(B)
−1 = iγ(B)a

(B)
0 a

(A)
−1 (0)a

(A)
0

†
(0), (3.15)

where we have defined the susceptibilities in the two waveguides

γ(A) = − i

v(A)

∣∣∣g(A)
∣∣∣2 χ∗, γ(B) = − i

v(B)
g(B)*g(A)χ∗. (3.16)

Eq. (3.15) has the form of a third-order nonlinear optical process, where three field ampli-

tudes produce field amplification, similar to the form derived for four-wave mixing, Raman

scattering, and backward stimulated Brillouin scattering [157]. Examining the equation

for waveguide B reveals the nonlocal nature of the susceptibility, where field amplitudes in

waveguide A determine the response in the optically decoupled, spatially separated waveg-

uide B. Furthermore, the susceptibility γ(B) depends on the Brillouin coupling rates in both

waveguides A and B. Similar expressions can be written for the anti-Stokes (n = 1) tone in

the waveguides.

For simplicity, we assume the two waveguides are identical2 by setting v(A) = v(B) = v

and g(A) = g(B) = g, which is a good approximation in many physical systems [139,186,187].

The equations describing the fields in waveguides A and B are now

∂

∂z
a(A)
n = −1

v
|g|2

∣∣∣a(A)
−1 (0) a

(A)
0 (0)

∣∣∣ |χ|(a(A)
n−1 e

iφeiΛ − a(A)
n+1 e

−iφe−iΛ
)
,

∂

∂z
a(B)
n = −1

v
|g|2

∣∣∣a(A)
−1 (0) a

(A)
0 (0)

∣∣∣ |χ|(a(B)
n−1 e

iφeiΛ − a(B)
n+1 e

−iφe−iΛ
)
,

(3.17)

where we denote the relative phase between the two tones at the input to waveguide A as

Λ = arg(a
(A)
−1

†
(0) a

(A)
0 (0)) and the phase of the frequency response φ = arg(χ). We now

solve the differential equation by rotating the field operators ān = ane
−i(φ+Λ)n, giving us

2. In the case where the two waveguides have a different coupling rate g(A) 6= g(B) the results presented
here will be only slightly modified, changing the effective Brillouin gain and potentially adding a global
phase shift. However, note that the optical group velocities of the two waveguides cannot vary much to
ensure phase-matching conditions (see Fig. 3.1(a) and Section 3.2.1).
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the form

∂

∂z
ān = −1

2
GB

√
P

(A)
0 P

(A)
−1

Γ

2
|χ| (ān−1 − ān+1) , (3.18)

for both waveguides, and we have expressed the input fields in terms of optical power,

using Pn = ~ωnva†nan, and the acousto-optic coupling in terms of Brillouin gain GB =

4|g|2/(~ωv2Γ) [172, 173]. This recurrence relation is consistent with the Bessel function

identity J ′n = 1
2(Jn−1 − Jn+1), such that the optical fields can be written as a linear com-

bination ān(z) =
∑

m cn,mJm(−ξ z), where ξ = GB(P
(A)
0 P

(A)
−1 )1/2(Γ/2)|χ|. We can find

the coefficients cn,m using Jm(0) = δm,0 such that cn,m = ān−m(0), and using the identity

Jn(−x) = J−n(x), we arrive at

an(z) =
∑
m

an+m(0)Jm (ξ z) e−i(φ+Λ)m, (3.19)

where we have rotated the operators back to the field envelope frame. Substituting in the

initial conditions for each waveguide gives us

a(A)
n (z) = a

(A)
0 (0)J−n (ξ z) ei(φ+Λ)n + a

(A)
−1 (0)J−(n+1) (ξ z) ei(φ+Λ)(n+1),

a(B)
n (z) = a

(B)
0 (0)J−n (ξ z) ei(φ+Λ)n,

(3.20)

where we have denoted the field amplitude at the input to waveguide B as a
(B)
0 , with optical

frequency ω
(B)
0 . Evaluating the optical field amplitude at the output of waveguide B, i.e.,

the sum of the amplitudes at equally spaced frequencies s
(B)
out(t) ∝

∑
n a

(B)
n e−i(ω

(B)
0 +nΩ)t, we

arrive at

s
(B)
out(t) =

√
P

(B)
0 e−iω

(B)
0 t
∑
n

Jn

(
Γ

2
|χ|GB

√
P

(A)
0 P

(A)
−1 z

)
e
−i
(

Ωt−(φ+Λ)+π

)
n
, (3.21)

where we have used the identity J−n = (−1)nJn, and neglected a global phase of the input

field. The field amplitudes are normalized such that the total power entering waveguide

B is P
(B)
0 . Using the Jacobi-Anger expansion,

∑
n Jn(z)einϕ = eiz sinϕ, we can directly see
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that the field is purely phase modulated

s
(B)
out(t) =

√
P

(B)
0 e−iω

(B)
0 t exp

[
i
Γ

2
|χ|GB

√
P

(A)
0 P

(A)
−1 z sin

(
Ωt− (φ+ Λ)

)]
, (3.22)

where the modulation depth is determined by the Brillouin gain, the optical powers in waveg-

uide A and the propagation length. The frequency response χ(Ω) of this phase-modulated

field follows a Lorentzian lineshape, determined by the acoustic resonant frequency and

dissipation rate, with a magnitude given by |χ|2 = [(Ω0 − Ω)2 + (Γ/2)2]−1.

Summarizing the results of this section, we see how the optical intensity envelope gen-

erated by the two tones in waveguide A drives the acoustic mode, as seen in Eq. (3.13)

and illustrated in Fig. 3.2(a). This acoustic field modulates an optical tone in waveguide B

as it propagates through the device (see Fig. 3.2(e)), resulting in pure phase modulation,

as seen in Fig. 3.2(f). The optical field in waveguide A also experiences phase modulation

as a result of the forward Brillouin scattering process, seen in Figs. 3.2(b,c), however, the

intensity envelope remains unchanged, as was discussed in Section 2.3.4.

Our analysis shows an overall redshift of the light in waveguide A as it propagates, as

seen in the calculations presented in Figs. 3.2(b,c) and consistent with previous forward-

Brillouin scattering studies [176]. The phonons generated through the Brillouin process have

a finite lifetime, and their dissipation removes energy from the system, which in the absence

of optical dissipation represents the only loss mechanism. The red-shift can be derived from

the mode amplitudes (Eq. (3.20)), yielding a power-loss given by P
(A)
RS (z) = ~Ω|b(z)|2Γz,

showing the energy dissipated from the phonon field, as was discussed in Section 2.3.4.
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Figure 3.2: Simulation of the nonlocal transduction using an FSBS-active device. (a) The
input to waveguide A is comprised of two tones, illustrated both in the frequency and time
domain, showing the resulting envelope modulation. (b) The optical fields drive a phonon
field, scattering light into multiple sidebands as they propagate along the device. (c) The
field at the output of waveguide A shows phase modulation of the input wave, however, the
intensity envelope is unaffected. The same steps are illustrated for waveguide B: (d) A single
tone is launched into the waveguide, (e) is scattered by the acoustic field as it propagates
along the device, and (f) shows phase modulation side-bands at the output. The time-
domain illustrations in these figures are schematic, and not shown to scale. Reproduced
from Ref. [154].
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3.2.1 Effects of optical dispersion

Our results up to this point have relied on our assumption of vanishing optical group velocity

dispersion (GVD) in the frequency range over which the optical tones are cascaded. Within

this idealized system, we saw that the beat note produced between the pump and the signal

wave is transferred over to the adjacent waveguide as pure phase modulation. However,

this isn’t necessarily the case if we include higher-order effects such as optical dispersion.

Neglecting dispersion is a valid approximation in many practical systems [29, 64, 172] and

GVD can be further avoided through dispersion engineering of optical waveguides [190,191].

However, in systems with non-negligible dispersion, the field dynamics will deviate from our

derivation, such that the light in waveguide B will no longer be purely phase modulated,

and will exhibit some residual intensity modulation [170].

To understand the impact of GVD, we rewrite the equations describing the field en-

velopes, keeping the second-order term of the optical dispersion operator (Eq. (2.22)) in

both waveguides A and B

b = −iχ
∑
n

(
g∗na

(A)
n a

(A)
n−1

†
e−i∆knz + g∗na

(B)
n a

(B)
n−1

†
e−i∆knz

)
,[

vn
∂

∂z
− i

2

(
∂2ω

∂k2

)
∂2

∂z2

]
an = −i

(
gnan−1be

i∆knz + g∗n+1an+1b
†e−i∆kn+1z

)
.

(3.23)

Now, we have frequency dependent optical group velocity vn = ∂kω
∣∣
ω=(ω0+nΩ)

and a phase

mismatch term ∆kn = q0 − (kn − kn−1) ≈ Ω(v−1
0 − v−1

n ). The dispersion leads to non-

symmetric sidebands around the carrier, such that the phase-modulated wave also acquires

some intensity modulation which we refer to as residual amplitude modulation (RAM). We

quantify the RAM by looking at the components of the intensity at frequency Ω, normalized

to the total scattered power

RAM =

∑
n

(
a

(B)
n−1

†
a

(B)
n + a

(B)
n−1a

(B)
n

†
)

∑
n 6=0 a

(B)
n a

(B)
n

† . (3.24)

Numerically simulated RAM is shown in Figs. 3.3, where the dispersion is given both in



CHAPTER 3 57

terms of GVD, and a commonly used dispersion parameter D, defined by

GVD =
∂2k

∂ω2

∣∣∣∣
ω=ω0

, D = −2πc

λ2
GVD. (3.25)

When using parameter values consistent with common materials and waveguide design, the

simulation results in residual intensity modulation on the order of −50 dB. In a practical

experimental context, the frequency response of other optical elements in the system (such

as optical fiber components) can easily yield larger values of RAM compared with the RAM

produced by the Brillouin-active device.

Another point to note is that throughout our analysis, we have studied the case where the

modes in both waveguides A and B have the same group velocity, based on the assumption

that they are similar in design and operating at similar wavelengths. However, when using

vastly different optical wavelengths in waveguides A and B, the group velocity in each

wavelength range may be different and can lead to a phase mismatch between the phonons

driven in waveguide A and those needed for efficient phase modulation in waveguide B. This

phase mismatch can be expressed in terms of the driving frequency Ω and the frequency-

dependent group velocity v (ω)

∆q = Ω

 1

v
(
ω

(A)
0

) − 1

v
(
ω

(B)
0

)
 , (3.26)

where we assume that the optical dispersion is identical in both waveguides A and B. For the

phase mismatch to be small over the device length, i.e., |∆qL| < π, we have the condition

∣∣∣∣∣∣ 1

v
(
ω

(A)
0

) − 1

v
(
ω

(B)
0

)
∣∣∣∣∣∣ < π

ΩL
. (3.27)
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Figure 3.3: (a) Numerically calculated residual amplitude modulation (RAM) as a function
of group velocity dispersion (GVD) for a 2.5 cm long device with Brillouin gain GB =
700 (Wm)−1 and an acoustic Q-factor of 1000. The input powers are 100 mW in each of the
two tones into waveguide A and 100 mW into a single tone in waveguide B. The parameters
have been chosen similar to those in a practical system, demonstrated in Ref. [187]. (b)
The same results plotted on a logarithmic scale. Values of GVD in bulk silicon and optical
fiber are shown for reference. (c) Normalized optical field envelope in waveguide A as a
function of time shows the intensity modulation that drives an acoustic field at 4.5 GHz.
(d) The normalized optical field envelope in waveguide B shows a constant envelope in the
absence of dispersion (green, dashed). When some dispersion is taken into account, a small
intensity modulation can be seen (red). Adapted from Ref. [154].
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3.3 Coupling mediated by multiple phonon modes

As we have seen in the previous section, the frequency response of the Brillouin-induced

nonlinear susceptibility is determined by the properties of the acoustic mode participating

in the interaction. This response can be further engineered by utilizing multiple acoustic

modes, such that they all contribute to the susceptibility. An example of such a device,

implementing the acoustic coupling using a phononic crystal design, was demonstrated in

Ref. [186]. In this section, we will analyze systems utilizing multiple acoustic modes, and

show how the presence of multiple coherent phonons alters the frequency response of the

Brillouin-induced susceptibility.

3.3.1 Second order frequency response

We start by looking at a system consisting of two identical spatially separated Brillouin-

active waveguides. We assume that each waveguide supports an optical mode, as well as a

phonon mode with a resonant frequency Ω0, and we denote the amplitudes of the phonon

modes b(A), b(B) for waveguides A and B, respectively. The structure is designed such that

the two optical waveguides are optically separated while the two acoustic fields are coupled

with a rate µ, as illustrated in Fig. 3.4(a).

The acoustic Hamiltonian from Eq. (3.2) is now

Hac = ~
∫
dz
(
b(A)†Ω̂0b

(A) + b(B)†Ω̂0b
(B) − b(A)†µb(B) − b(A) µ b(B)†

)
, (3.28)

which can also be written in matrix form

Hac = ~
∫
dz

(
b(A)† b(B)†

) Ω̂0 −µ

−µ Ω̂0


b(A)

b(B)

. (3.29)

Assuming phase-matching conditions are satisfied, the interaction Hamiltonian terms are
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Figure 3.4: (a) The optical field in each waveguide (a(A), a(B)) is coupled to an acoustic
mode (b(A), b(B)) through a forward Brillouin process. The two spatial acoustic modes are
coupled to each other with a rate µ. (b) The same system can be described in the acous-
tic ‘super-mode’ basis, using symmetric and anti-symmetric combinations of the spatial
acoustic modes. The two acoustic super-modes are acoustically decoupled, each interacting
with both optical fields. (c) Calculated frequency response of the nonlocal susceptibility in
waveguide B, for a different number of coupled acoustic modes, following Eq. (3.50). (d)
Calculated frequency response of the local susceptibility in waveguide A. (e) Normalized
spectrum of a spontaneous-scattering sideband, for a different number of coupled acoustic
modes, following Eq. (3.59). (f–h). Magnified view of panels (c–e), respectively. All of the
simulated frequency responses were calculated assuming µ = Γ/2. Adapted from Ref. [154].
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given by

H
(A)
int =

∑
n

~
∫
dz g(A)

n

∗
a(A)
n a

(A)
n−1

†
b(A)† + H.C.,

H
(B)
int =

∑
n

~
∫
dz g(B)

n

∗
a(B)
n a

(B)
n−1

†
b(B)† + H.C.,

(3.30)

where we see the three-wave process, between two optical tones and an acoustic mode, in

each of the waveguides. We assume that the optical Hamiltonian terms remain unchanged.

We can now calculate the equations of motion of the phonons using Eq. (3.3), yielding

∂

∂t
b(A) = −iΩ̂0b

(A) + iµb(B) − i
∑
n

g(A)
n

∗
a(A)
n a

(A)
n−1

†
,

∂

∂t
b(B) = −iΩ̂0b

(B) + iµb(A) − i
∑
n

g(B)
n

∗
a(B)
n a

(B)
n−1

†
.

(3.31)

This result is consistent with a temporal coupled-mode theory approach such as described

in Refs. [186,192].

Alternatively, we can diagonalize Eq. (3.29), to the eigenbasis where we have two

decoupled phonon modes

Hac = ~
∫
dz

(
b†+ b†−

)Ω̂+ 0

0 Ω̂−


b+
b−

. (3.32)

These phonon ‘super-modes’ extend spatially to both waveguides, and can be written as a

linear combination of the spatial phonon modes b± =
(
b(A) ± b(B)

)
/
√

2, and their respective

frequencies Ω̂± = Ω̂0 ∓ µ, which retain the commutation relations [b±(z, t), b†±(z′, t)] =

δ(z − z′) and [b±(z′, t), b†∓(z′, t)] = 0. The interaction Hamiltonian terms in this basis are

given by

H
(A)
int =

∑
n

~
∫
dz

(
g

(A)
+

∗
a(A)
n a

(A)
n−1

†
b†+ + g

(A)
−
∗
a(A)
n a

(A)
n−1

†
b†−

)
+ H.C.,

H
(B)
int =

∑
n

~
∫
dz

(
g

(B)
+

∗
a(B)
n a

(B)
n−1

†
b†+ + g

(B)
−
∗
a(B)
n a

(B)
n−1

†
b†−

)
+ H.C.,

(3.33)
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where g
(l)
± is the coupling rate between a phonon super-mode and the optical tones in

waveguide l (l = {A,B}).

Next, we calculate the equations of motion using Eq. (3.3) and keep the dispersion

operator to first order for the optical modes, and zero order for the acoustic modes. Addi-

tionally, we factor out the fast oscillating terms and add a dissipation rate Γ to the phonon

modes

∂

∂t
a(A)
n + v

∂

∂z
a(A)
n = −i

(
g

(A)
+ a

(A)
n−1b+ + g

(A)
+

∗
a

(A)
n+1b

†
+ + g

(A)
− a

(A)
n−1b− + g

(A)
−
∗
a

(A)
n+1b

†
−

)
,

∂

∂t
a(B)
n + v

∂

∂z
a(B)
n = −i

(
g

(B)
+ a

(B)
n−1b+ + g

(B)
+

∗
a

(B)
n+1b

†
+ + g

(B)
− a

(B)
n−1b− + g

(B)
−
∗
a

(B)
n+1b

†
−

)
,

∂

∂t
b± + i

(
Ω± − Ω− iΓ

2

)
b± = −i

∑
n

(
g(A)∗

±a
(A)
n a

(A)
n−1

†
+ g(B)∗

±a
(B)
n a

(B)
n−1

†
)
.

(3.34)

At steady-state, we have

b± = −i
(

1

i(Ω± − Ω) + Γ/2

)∑
n

(
g

(A)
±
∗
a(A)
n a

(A)
n−1

†
+ g

(B)
±
∗
a(B)
n a

(B)
n−1

†
)
,

∂

∂z
a(A)
n = − i

v(A)

(
g

(A)
+ a

(A)
n−1b+ + g

(A)
+

∗
a

(A)
n+1b

†
+ + g

(A)
− a

(A)
n−1b− + g

(A)
−
∗
a

(A)
n+1b

†
−

)
,

∂

∂z
a(B)
n = − i

v(B)

(
g

(B)
+ a

(B)
n−1b+ + g

(B)
+

∗
a

(B)
n+1b

†
+ + g

(B)
− a

(B)
n−1b− + g

(B)
−
∗
a

(B)
n+1b

†
−

)
.

(3.35)

By projecting the ‘±’ super-modes on waveguides A and B we see that g
(A)
± = g/

√
2,

and g
(B)
± = ±g/

√
2, a result of the symmetries of the super-modes. Since we assume

that the waveguides are identical, we set the optical group velocities to the same value

v = v(A) = v(B), such that

b± = − i√
2

(
1

i(Ω± − Ω) + Γ/2

)
g∗
∑
n

(
a(A)
n a

(A)
n−1

†
± a(B)

n a
(B)
n−1

†
)
,

∂

∂z
a(A)
n = − i√

2

1

v

(
ga

(A)
n−1b+ + g∗a

(A)
n+1b

†
+ + ga

(A)
n−1b− + g∗a

(A)
n+1b

†
−

)
,

∂

∂z
a(B)
n = − i√

2

1

v

(
ga

(B)
n−1b+ + g∗a

(B)
n+1b

†
+ − ga

(B)
n−1b− − g

∗a
(B)
n+1b

†
−

)
.

(3.36)

These equations have the same form as Eq. (3.12), where we saw that ∂zb± = 0, such that

the phonon super-modes only depend on the initial conditions of the optical fields.

Similar to our earlier analysis, we consider the case of where the optical input fields
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consist of two tones into waveguide A, separated in frequency by Ω, and a single tone in

waveguide B, giving us

b± = − i√
2

(
1

i (Ω± − Ω) + Γ/2

)
g∗a

(A)
0 (0) a

(A)
−1

†
(0). (3.37)

Substituting the phonon fields into the optical equations of motion yields

∂

∂z
a(A)
n = −|g|

2

v

∣∣∣∣a(A)
−1

†
(0) a

(A)
0 (0)

∣∣∣∣ ∣∣∣χ(A)
∣∣∣(a(A)

n−1e
iφ(A)

eiΛ − a(A)
n+1e

−iφ(A)
e−iΛ

)
,

∂

∂z
a(B)
n = −|g|

2

v

∣∣∣∣a(A)
−1

†
(0) a

(A)
0 (0)

∣∣∣∣ ∣∣∣χ(B)
∣∣∣(a(B)

n−1e
iφ(B)

eiΛ − a(B)
n+1e

−iφ(B)
e−iΛ

)
,

(3.38)

where we have defined the frequency response in each waveguide

χ(A) =
1/2

i (Ω+ − Ω) + Γ/2
+

1/2

i (Ω− − Ω) + Γ/2
,

χ(B) =
1/2

i (Ω+ − Ω) + Γ/2
− 1/2

i (Ω− − Ω) + Γ/2
,

(3.39)

and phases

φ(A) = arg
(
χ(A)

)
, φ(B) = arg

(
χ(B)

)
, Λ = arg

(
a

(A)
−1

†
(0) a

(A)
0 (0)

)
. (3.40)

The frequency response χ(B) of the nonlocal susceptibility induced in waveguide B by

the optical fields in waveguide A is dramatically changed in this multi-phonon case, a result

of the phase difference between the two complex terms. As seen in Fig. 3.4(c), the coupling

of multiple acoustic fields yields a high-order frequency response, showing a sharp frequency

roll-off. This can also be understood from the interference of the two phonon super-modes,

shown in Fig. 3.4(b), resulting in a multi-pole function. The susceptibility in waveguide A

is also slightly altered around the acoustic resonance, as seen in Fig. 3.4(d), but decays as a

Lorentzian away from the center frequency, similar to the single-phonon case. Following the

steps described in the previous section, we can solve for the field amplitude at the output
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of waveguide B

s
(B)
out(t) =

√
P

(B)
0 e−iω

(B)
0 t exp

[
i
Γ

2

∣∣∣χ(B)
∣∣∣ GB√P (A)

0 P
(A)
−1 z sin

(
Ωt− (φ+ Λ)

)]
, (3.41)

which now has the modified frequency response χ(B). Practically, this enables the design of

acousto-optic filter responses with a high-order lineshape, which can have applications in

high-performance microwave-photonics applications [193].

3.3.2 Multi-pole frequency response

We can extend our analysis further, considering an arbitrary number of phonons taking

part in the transduction. Assuming N identical waveguides and nearest-neighbor acoustic

coupling, the acoustic Hamiltonian is given by

Hac = ~
∫
dz

(
b(A)† b(B)† · · · b(N)†

)


Ω̂0 µ

µ∗ Ω̂0 µ

. . .
. . .

. . .

µ∗ Ω̂0 µ

µ∗ Ω̂0





b(A)

b(B)

...

b(N)


, (3.42)

where µ = |µ|eiθ, and we assume that all matrix entries not on the three main diagonals

are zero. The interaction Hamiltonian of the `th waveguide is now

H
(`)
int =

∑
n

~
∫
dz g∗a(`)

n a
(`)
n−1

†
b(`)
†

+ H.C. (3.43)

The tridiagonal matrix from Eq. (3.42) can be diagonalized [194], yielding N distinct

eigenvalues

Ω̂m = Ω̂0 + 2 |µ| cos

(
πm

N + 1

)
, (3.44)

and the phonon fields can be decomposed into phonon eigenmodes

b(`) =
N∑
m=1

V (`)
m bm, V (`)

m =

√
2

N + 1
sin

(
πm`

N + 1

)
eimθ. (3.45)
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Here, we have chosen the notation such that the index m denotes phonon super-modes,

` enumerates the different waveguides, and n sums the different optical tones spaced by

frequency Ω. We can now rewrite the acoustic and interaction terms of the Hamiltonian

Hac =
N∑
m=1

~
∫
dz b†mΩ̂mbm,

H
(`)
int =

N∑
m=1

∑
n

~
∫
dz g(`)

m

∗
a(`)
n a

(`)
n−1

†
b†m + H.C.,

(3.46)

where the rate g
(`)
m , denoting the coupling of the mth phonon eigenmodes to the optical

tones in the `th waveguide, can be described in terms of the single-phonon coupling rate

(g
(`)
m = gV

(`)
m ) using Eq. (3.45).

Calculating the equations of motion using Eq. (3.3), under the same assumptions as in

the previous section, we can write the field envelopes for the phonon eigenmodes and the

optical fields in the `th membrane

bm = −i
(

1

i∆m + Γm/2

)∑
n

N∑
`=1

g(`)
m

∗
a(`)
n a

(`)
n−1

†
,

∂

∂z
a(`)
n = − i

v

N∑
m=1

(
g(`)
m a

(`)
n−1bm + g(`)

m

∗
a

(`)
n+1b

†
m

)
.

(3.47)

Assuming two tones at the input of waveguide A with a frequency separation Ω, and a

single tone in the input of waveguide B, the phonon field from Eq. (3.47) is now

bm = −i
(

1

i∆m + Γm/2

)
g(A)
m

∗
a

(A)
0 (0) a

(A)
−1

†
(0), (3.48)

where ∆m = Ωm − Ω and Γm are the detuning and the loss of the mth phonon eigenmode,

respectively. Following the same steps as described in Section 3.3, we can find the equation

of motion for the optical tones in waveguide `

∂

∂z
a(`)
n = −1

v
|g|2

∣∣∣∣a(A)
−1

†
(0) a

(A)
0 (0)

∣∣∣∣ ∣∣∣χ(`)
∣∣∣(a(`)

n−1e
iφ(`)

eiΛ − a(`)
n+1e

−iφ(`)
e−iΛ

)
, (3.49)
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where the multi-pole frequency response is given by

χ(`) =
N∑
m=1

V (`)
m V (A)

m

∗
(

1

i∆m + Γm/2

)
, (3.50)

where φ(`) = arg(χ(`)), and Λ = arg(a
(A)
−1

†
(0) a

(A)
0 (0)). Eq. (3.49) has an identical form to

Eq. (3.17), and following the steps from Section 3.2 we can find the optical field envelopes

a(A)
n (z) = a

(A)
0 (0)J−n

(
ξ(A)z

)
ei(φ

(A)+Λ)n + a
(A)
−1 (0)J−(n+1)

(
ξ(A)z

)
ei(φ

(A)+Λ)(n+1),

a(B)
n (z) = a

(B)
0 (0)J−n

(
ξ(B)z

)
ei(φ

(B)+Λ)n,

(3.51)

where ξ(A) = (Γ/2)|χ(A)|GB(P
(A)
0 P

(A)
−1 )1/2z and ξ(B) = (Γ/2)|χ(B)|GB(P

(A)
0 P

(A)
−1 )1/2z. We

note that in this case, waveguides A and B do not have to be in specific spatial positions

along the coupled waveguide array, and are defined only by the optical inputs (i.e., we can

analyze this for any value of `). The field amplitude at the output of waveguide B is now

given by

s
(B)
out(t) =

√
P

(B)
0 e−iω

(B)
0 t exp

[
i

Γ

2

∣∣∣χ(B)
∣∣∣ GB

√
P

(A)
0 P

(A)
−1 z sin

(
Ωt−

(
φ(B) + Λ

))]
.

(3.52)

The frequency response of the system (Eq. (3.50)) yields a sharper frequency roll-off

with the addition of coupled acoustic modes, as seen in Fig. 3.4(c). We will examine the

first few cases, starting with a single acoustic mode, which will follow a Lorentzian function

χ(B) =
1

Ω− (Ω0 − iΓ/2)
, (3.53)

which has a single pole, and a maximum amplitude at frequency Ω = Ω0. Two coupled

acoustic modes will have the response

χ(B) =
iµ

[Ω− (Ω+ − iΓ/2)] [Ω− (Ω− − iΓ/2)]
, (3.54)

where Ω± = Ω0 ∓ µ, which has two poles, with a maximum amplitude at Ω = Ω0 ±
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√
µ2 − (Γ/2)2 when µ > Γ/2. For µ ≤ Γ/2 the function will have a single peak at Ω = Ω0.

Three coupled acoustic modes will have the frequency response

χ(B) =
−µ2

[Ω− (Ω+ − iΓ/2)] [Ω− (Ω0 − iΓ/2)] [Ω− (Ω− − iΓ/2)]
(3.55)

where Ω± = Ω0∓
√

2µ, which has three poles, and for µ >
√

6Γ has local amplitude maxima

at Ω = Ω0 and Ω = Ω0 ±
√

4
3µ

2 + 2
3µ
√
µ2 − 6(Γ/2)2 − (Γ/2)2, otherwise showing a single

maximum at Ω = Ω0.

Interestingly, calculating the frequency response at the output of waveguide A, given

by the function χ(A), always has N − 1 zeros and N poles, regardless of the number of

acoustic modes. Such functions behave overall similar to the single-pole case, decaying as

a Lorentzian function, as seen in Fig. 3.4(d).

3.3.3 Spontaneous scattering

Up to this point, we have considered acousto-optic scattering from coherently driven phonons

produced in waveguide A. However, the thermal occupation of the acoustic modes will result

in spontaneous Brillouin scattering in the system [157, 172]. This can also be understood

as the noise associated with the dissipation of the acoustic mode, through the fluctuation-

dissipation theorem [175,195]. If we seek to utilize such nonlocal susceptibilities to transduce

information, as the basis for new signal processing technologies [139,186–188], it is essential

to understand how this noise is imparted from the elastic field onto the optical fields.

Starting from a single acoustic mode with frequency Ω0, an optical tone at frequency

ω0 with a field amplitude a0 will be scattered to sidebands at frequencies ω0 ± Ω0. The

amplitudes of the spontaneously scattered light are given by [172,175]

a−1(z, τ) = −ig
∗

v
a0

∫ τ

0
dτ ′
∫ z

0
dz′η†(z′, τ ′)e−

Γ
2

(τ−τ ′),

a1(z, τ) = −ig
v
a0

∫ τ

0
dτ ′
∫ z

0
dz′η(z′, τ ′)e−

Γ
2

(τ−τ ′),

(3.56)

where η is the Langevin force corresponding to the phonon dissipation rate, with statistics

〈η〉 = 0 and 〈η†(z, t)η(z′, t′)〉 = n̄Γδ(z − z′)δ(t − t′) when evaluating the ensemble aver-
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ages [172]. We denote nth as the average number of thermally occupied phonons, following

a Bose-Einstein distribution nth = [exp (~Ω/kBT )− 1]−1, with T denoting the temperature,

and kB the Boltzmann constant. These expressions apply for the scattering in both waveg-

uides A and B. As we have seen in Chapter 2, these equations can be used to calculate the

spectral density of the spontaneous scattering

S(ω) = ~ω0GBPz

(
Γ

2

)2( nth + 1

(ω − (ω0 − Ω0))2 + (Γ/2)2
+

nth

(ω − (ω0 + Ω0))2 + (Γ/2)2

)
,

(3.57)

showing a Lorentzian lineshape with a full-width at half-maximum Γ (see Section 2.3.4).

In the case of coupled acoustic modes, as discussed in the previous section, Eq. (3.56)

can be generalized

a
(`)
−1(z, τ) = −ig

∗

v
a0

N∑
m=1

V (`)
m

∗
∫ τ

0
dτ ′
∫ z

0
dz′η†m(z′, τ ′)e−

Γ
2

(τ−τ ′),

a
(`)
1 (z, τ) = −ig

v
a0

N∑
m=1

V (`)
m

∫ τ

0
dτ ′
∫ z

0
dz′ηm(z′, τ ′)e−

Γ
2

(τ−τ ′),

(3.58)

where ηm is the Langevin force associated with the mth phonon super-mode, and V
(`)
m is

the coefficient used in Eq. (3.50). Since the acoustic super-modes are orthogonal, we use

the fact that the thermal phonons in each eigenmode are uncorrelated and follow 〈ηm〉 = 0

and 〈η†m(z, t)ηm′(z
′, t′)〉 = nmΓδm,m′δ(z − z′)δ(t− t′). The spectral density is now given by

S(ω) =~ω0GBPz

(
Γ

2

)2

×
N∑
m=1

|V (l)
m |2

(
nm + 1

(ω − (ω0 − Ωm))2 + (Γ/2)2
+

nm

(ω − (ω0 + Ωm))2 + (Γ/2)2

)
,

(3.59)

where nm is the average thermal phonon occupation of the mth phonon super mode. We

see that the spontaneous scattering results in a noise spectrum that is comprised of a

sum of Lorentzian lineshapes. This is distinct from the multi-pole response observed for

a transduced signal (Eq. (3.50)), which results from coherent interference. In the case

of weakly coupled acoustic modes, we can readily see how the noise spectrum takes a
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Lorentzian form. In this case, the frequency differences of the super-modes will be small and

we can approximate nm ≈ nth and ω0±Ωm ≈ ω0±Ω0. Using the fact that
∑N

m=1 |V
(l)
m |2 = 1,

we see that the spontaneous spectrum is consistent with a Lorentzian frequency response

obtained from a single acoustic mode, given by Eq. (3.57).

Interestingly, the presence of spontaneously scattered photons in either waveguide has

no impact on the driven acoustic field3 [172]. The scattering produced from the thermally

occupied phonons only adds phase fluctuations which do not change the forcing function

driving the coherent acoustic fields, as it is determined only by the intensity envelope of the

light field. This can be seen directly from Eq. (3.9) where the contribution to the driven

phonon field is the sum of terms (a
(A)
−1

†
a

(A)
0 +a

(A)
0

†
a

(A)
1 +a

(B)
−1

†
a

(B)
0 +a

(B)
0

†
a

(B)
1 ), which equals

zero when plugging in the mode amplitudes from Eq. (3.56).

3.4 Conclusion

The theoretical model presented in this chapter describes the nonlinear dynamics of forward

Brillouin active devices which utilize the nonlocal nature of the acoustic modes participating

in the process. This nonlocal susceptibility is enabled by the long lifetime of the phonons,

which allows them to propagate a large distance —spanning many optical wavelengths—

to mediate coupling between optically-decoupled regions of the device.

We have shown that the optical intensity envelope of light in waveguide A induces a

nonlinear response in the spatially-separated waveguide B, resulting in a phase modulation

set by the Brillouin gain, acoustic properties, interaction length, and optical powers. This

phenomenon can be readily measured within integrated-photonic devices, where the tight

confinement of the optical and acoustic fields to micrometer-scale waveguides yields high

Brillouin gain [139, 186, 187]. Multi-core optical fibers can also demonstrate nonlocal sus-

ceptibility between the separated cores, where the long interaction length and high-power

handling can produce strong nonlinear effects [188].

We have seen that this nonlocal susceptibility can be mediated by multiple coupled

3. This analysis focuses on forward intra-modal Brillouin processes. The effects of spontaneous scattering
will be different in backward and inter-modal scattering.
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phonons, which can be treated as acoustic super-modes, all interacting with the optical

fields. The coherent interference of these acoustic super-modes yields a nonlocal suscep-

tibility corresponding to a multi-pole frequency response, which offers a sharp frequency

roll-off and high out-of-band suppression. When using these optical nonlinearities for signal

processing, such hybrid photonic-phononic strategies yield transfer functions that would be

challenging to realize using all-optical techniques, providing technological value in many

microwave and photonics applications [193,196]. In the next chapters, we will see how this

nonlocal response can be utilized to produce multi-pole microwave-photonic filters. Addi-

tionally, the analysis presented in this work can be readily adapted to describe nonlocal

susceptibilities involving other scattering processes such as inter-modal Brillouin scatter-

ing [30,65], which will be discussed further in Chapter 9.



Chapter 4

Microwave photonics

4.1 Introduction

As we seek to utilize an ever-increasing portion of the electromagnetic spectrum for next-

generation communications and radar systems, microwave-photonic signal processing plat-

forms show great promise for their ability to manipulate signals at high frequencies and

over extremely wide bandwidths [193,197]. The advantages offered by optical platforms in-

clude low-loss propagation in optical fibers, immunity to radio-frequency interference, and

extremely large bandwidth. These properties have enabled the development of devices that

would be very challenging to implement in conventional microwave systems. Furthermore,

when considering the field of integrated photonics, the footprint of devices can be made

much smaller than their microwave counterparts, as the optical wavelength is ∼105 times

smaller than that of microwaves.

In its simplest form, a microwave-photonic link is comprised of an electro-optic mod-

ulator, encoding a microwave signal onto an optical carrier wave at the link input, and a

demodulation scheme and photodetection to convert the signal back to the microwave do-

main at the link output. While in the optical domain, the signal can be transmitted over a

large distance thanks to optical fiber and optical amplification technology, and additionally,

signal processing operations can be performed, as will be discussed in Section 4.5.

71
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Figure 4.1: Schematic illustration of different microwave-photonic links. (a) Intensity-
modulated: an optical tone is modulated by a microwave signal using an intensity modulator
(IM), producing optical sidebands. The optical signal can be amplified using an optical
amplifier (EDFA) and directly detected at the link output to retrieve the microwave signal.
(b) Phase-modulated: The microwave signal is encoded into the optical carrier’s phase
using a phase modulator (PM). As phase cannot be directly detected, a demodulator needs
to be implemented. This can be achieved using an interferometer and balanced detection,
optical filtering, or heterodyne detection. The inset illustrates the analysis of the microwave-
photonic link as a ‘black box’ microwave system, where we only have access to the input
and output ports.
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The microwave signal can be modulated using multiple different schemes onto an op-

tical carrier. The two fundamental analog modulations are intensity modulation, where

a microwave signal is encoded in the power of the optical carrier, and phase modulation

in which the microwave signal induces phase shifts to the carrier wave. Fig. 4.1(a) illus-

trates a microwave-photonic link using an intensity modulation scheme, showing an intensity

modulator (typically requiring a DC biasing voltage source), and direct detection, since a

photodetector is sensitive to optical intensity and does not require additional demodulation.

In contrast, the phase-modulated microwave-photonic link shown in Fig. 4.1(b) utilizes a

phase modulator. Now, phase demodulation needs to be implemented, as optical detectors

are not sensitive to the phase of the detected field.

In the following sections, we will analyze an example of an intensity modulation based

microwave-photonic link, and study its performance. Additionally, we will examine possible

sources of noise and signal distortion, which must be considered when designing practical

systems and applications. This tutorial will introduce the concepts used in microwave-

photonic design and analysis and will be the basis for our discussion of Brillouin-based

microwave-photonic systems in the next chapters.

4.2 Microwave-photonic link example

We start by examining the operation of the intensity modulator at the RF-photonic link

input, as seen in Fig. 4.1(a). In this link, an intensity modulator is used at the link input

to encode the RF signal onto an optical signal. At the link output, direct detection using a

photodetector retrieves the signal back to the RF domain in the form of photocurrent.

4.2.1 Intensity modulation using a Mach-Zehnder interferometer

An intensity modulator is commonly implemented using a Mach-Zehnder modulator (MZM),

where an interferometer has sections made of a material with a strong electro-optic effect,

such as LiNbO3, GaAs, and InP. By applying an electric voltage across these sections, the

optical path length is modulated, inducing a relative phase shift between optical waves
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a b

DC source

RF source

Figure 4.2: (a) Schematic illustration of a Mach-Zehnder intensity modulator (MZM). (b)
An equivalent optical circuit diagram, where the effect of the electric fields is represented
as phase shifts. One of the optical paths has a DC phase shift φ, while the other arm has
a phase modulator inducing a time-dependent phase shift β. The interference of the two
arms at the modulator output yields an intensity-modulated signal.

propagating in the two interferometer arms, and resulting in an intensity modulation at the

modulator output. Typically, there is also a DC port, where a biasing voltage can be used

to set the operating point of the modulator, as illustrated in Fig. 4.2.

We define the modulator half-wave voltage Vπ as the applied voltage at which a phase

shift of π is produced. These can be different for the RF port and the DC port, and can be

used to write the phase shifts in terms of voltages

β = π
Vin

V RF
π

, φ = π
Vb − Voffset

V DC
π

. (4.1)

Here, Vin is the input RF voltage, Vb is the DC biasing voltage, and Voffset is the bias voltage

necessary to set the DC phase to φ = 0. To simplify notation, we will assume Voffset = 0 in

the rest of our analysis, however, it needs to be taken into account in practice.

One often views the intensity modulator as a linear device that perfectly converts signals

from the electrical to the optical domain, however, this notion is only valid for in the small-

signal limit, when Vin � V RF
π . More generally, the output optical field amplitude from a

modulator, driven by an input RF voltage at frequency Ω, is given by

Eo = Ei e
−iωt

[
α2 e−iφ +

(
1− α2

)
eiβ sin(Ωt)

]
, (4.2)
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a b c

Figure 4.3: (a) The optical power in each of the tones generated by the modulation, where
En denotes the component of the optical field oscillating at frequency ω+nΩ. The stronger
the input voltage, the more power is transferred from the carrier (n = 0) to the sidebands.
This calculation is for the case when the modulator is biased at quadrature, i.e., Vb/V

DC
π =

0.5. (b) The optical power in the optical tones, for different biasing voltages. The input
RF voltage in this calculation is set to Vin/V

RF
π = 0.075 (c) The phase of the optical tones

corresponding to panel (b). The change in the biasing point only shifts the phase of the
carrier (n = 0) relative to the sidebands.

where the parameter α accounts for the splitting ratios of the interferometer, and we have

assumed that the modulator is lossless1. Using the Jacobi-Anger expansion, this can also

be expressed as

Eo = Ei e
−iωt

[
α2 e−iφ +

(
1− α2

) ∞∑
n=−∞

Jn(β)e−inΩt

]
, (4.3)

where Jn(·) denotes the nth order Bessel function. We will assume the power is equally split

within the interferometer, setting α =
√

1/2, leaving us with

Eo =
1

2
Ei e

−iωt

[
e−iφ +

∞∑
n=−∞

Jn(β)e−inΩt

]
, (4.4)

which has multiple optical tones separated by frequency Ω, as shown in Fig. 4.3.

Ultimately, we will be interested in optical power, as it is what is observable on a

power-law detector. Examining the output power, Po = |Eo|2, we have

Po =
1

2
Pi

[
1 + cos

(
β sin (Ωt)− φ

)]
, (4.5)

1. Loss is typically accounted for by multiplying Eq. (4.2) by a constant [198].
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which can be rearranged to explicitly show the different frequency components

Po =
1

2
Pi

[ DC︷ ︸︸ ︷
1 + cos (φ) J0(β)

+ 2 cos (φ)
∞∑
n=1

J2n(β) cos
(

2nΩt
)

︸ ︷︷ ︸
even sidebands

+ 2 sin (φ)
∞∑
n=1

J2n−1(β) sin
(

(2n− 1) Ωt
)

︸ ︷︷ ︸
odd sidebands

]
.

(4.6)

This optical power represents the envelope of the field, which oscillates as a result of the

interference between optical tones after modulation. We will limit our attention to the first

few terms, which will become important in later analyses of signal distortion and noise

sources. We can identify the DC term, and the first few RF components, at multiples of Ω

PDC =
1

2
Pi

[
1 + cos (φ) J0(β)

]
, P2Ω = Pi cos (φ) J2(β) cos (2Ωt) ,

PΩ = Pi sin (φ) J1(β) sin (Ωt) , P3Ω = Pi sin (φ) J3(β) sin (3Ωt) ,

(4.7)

noting that the DC component is equivalent to the average power integrated over a time

much longer than the RF frequency, PDC = (1/T )
∫ T

0 dt Po(t) (where T � 2π/Ω). We

see that although the input RF signal was monochromatic, the optical intensity-modulated

signal has multiple frequency components, including all integer multiples of the input fre-

quency, as well as a DC term, as seen in Fig. 4.4. Interestingly, we see that the biasing

point φ changes the power in the different frequency components, but does not affect the

phase of the oscillations.

To see the relation between the input voltage and the optical power, it is useful to

analyze the small-signal limit (i.e., Vin � V RF
π ). In this case, we can linearize the Bessel

function to first order (J1(x) ≈ x/2), such that at the input frequency Ω, we have

PΩ = Pi sin (φ)

(
π

2

Vin

V RF
π

)
sin (Ωt) , (4.8)

where we see that the ‘effective’ linear half-wave voltage is V RF
eff (φ) = V RF

π / sin (φ). We

can see that the intensity-modulated output power at the fundamental frequency PΩ is
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a b c

Figure 4.4: (a) The DC optical power at the modulator output, as a function of the
biasing voltage. (b) Frequency components of the optical power for different values of
RF voltages. This calculation is for the case when the modulator is biased at quadrature,
i.e., Vb/V

DC
π = 0.5, and we can see that the even sidebands are suppressed. (c) Frequency

components of the optical power for different biasing voltages. The input RF voltage in
this calculation is Vin/V

RF
π = 0.075

maximized when operating at φ = π/2, corresponding to the biasing voltage Vb = V DC
π /2,

which is referred to as the ‘quadrature point’. At this biasing point, the optical power (Eq.

(4.6)) is given by

Po =
1

2
Pi

[
1 + 2

∞∑
n=1

J2n−1(β) sin
(

(2n− 1) Ωt
)]
, (4.9)

leaving us with odd sidebands only, as seen in Figs. 4.4(b,c).

4.2.2 Intensity modulation using optical filtering

An alternative method to produce an intensity-modulated optical field is by using a phase

modulator and an optical filter to convert the phase modulation to intensity modulation.

Interestingly, also in the case of the Mach-Zehnder modulator we analyzed earlier, the RF

signal was phase-modulated onto an optical carrier, and the interference between the two

interferometer paths yielded an intensity-modulated field (see Fig. 4.2). Now, we assume

that an optical filter removes all but two optical frequencies, namely the optical carrier and

a single sideband

ESSB
o = Ei e

−iωt

[
J0 (β) + J1 (β) e−iΩt

]
. (4.10)
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Analyzing the small-signal limit, we expand the Bessel function to first order (J0(x) ≈ 1,

J1(x) ≈ x/2), leaving us with

ESSB
o = Ei e

−iωt

[
1 +

β

2
e−iΩt

]
, (4.11)

and examining the power Po = |Eo|2, isolating the term oscillating at frequency Ω, we have

P SSB
Ω = Pi

(
π
Vin

V RF
π

)
cos (Ωt) . (4.12)

We see how the optical filter, selecting two tones from the phase modulator output, results

in the optical power oscillating at the input voltage frequency2. However, implementing

such optical filtering can be challenging, and in many cases, such as fiber-optic systems and

integrated photonics, intensity modulation is implemented using the interferometric scheme

discussed earlier (using an MZM).

4.2.3 Direct detection

At the link output, the microwave signal is retrieved from the optical domain back to

the microwave domain, which in the case of intensity modulation can be achieved using

direct detection. A photodetector generates photocurrent proportional to the optical power

I = ηPo, where η is the responsivity of the detector.

To continue our analysis, it is useful to express the input and output RF signals in terms

of their power, given by [198]

Pin =
〈V 2

in〉
Rin

, Pout = 〈I2〉Rout|Hpd|2. (4.13)

Here, 〈·〉 denotes a time average, Rin is the input impedance to the modulator, Rout the

output impedance of the detector, and Hpd is the detector circuit efficiency parameter,

which can be frequency dependent.

2. More generally, we can analyze the interference between two tones with optical powers P1 and P2,
separated by a frequency Ω and relative phase θ. The field amplitude, given by E = e−iωt(

√
P1e

iθ +√
P2e
−iΩt), will result in a beat note with a power given by PΩ = 2

√
P1P2 cos(Ωt+ θ).
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We can treat the microwave-photonic link as a ‘black box’, and analyze the relationship

between the microwave signals at the input and output ports. Assuming the input signal is

a single sinusoidal tone at frequency Ω, such that P
(Ω)
in = V 2

in/(2Rin), we can calculate the

output RF power at different frequencies, using Eqs. (4.7) and (4.13), resulting in

P
(DC)
out =

P 2
i

4

[
1 + cos (φ) J0

(
π

V RF
π

√
2RinP

(Ω)
in

)]2

η2Rout|Hpd|2,

P
(Ω)
out =

P 2
i

2
sin2 (φ) J1

2

(
π

V RF
π

√
2RinP

(Ω)
in

)
η2Rout|Hpd|2,

P
(2Ω)
out =

P 2
i

2
cos2 (φ) J2

2

(
π

V RF
π

√
2RinP

(Ω)
in

)
η2Rout|Hpd|2,

P
(3Ω)
out =

P 2
i

2
sin2 (φ) J3

2

(
π

V RF
π

√
2RinP

(Ω)
in

)
η2Rout|Hpd|2.

(4.14)

It is important to note that the power described in Eq. (4.14) is the RF power after

detection, such as would be measured on an RF-spectrum analyzer, and should not be

confused with the optical power PnΩ from Eq. (4.7), which describes optical power. The two

are related through P
(nΩ)
out = 〈PnΩ

2〉η2Rout|Hpd|2, showing the square-law of photodetection.

4.3 Noise sources

When analyzing a microwave-photonic link we must consider noise that may accompany the

detected signal, taking into account noise sources from both the microwave and the optical

domains. While the noise analysis is system-specific, here we will mention a few of the noise

sources that are relevant in most microwave-photonic links.

4.3.1 Laser intensity noise

The photodetector converts the optical intensity into an electrical current, hence intensity

fluctuations of the optical carrier will induce current fluctuations, and will result in RF

noise with a spectral density given by [198]

NRIN = P 2
o η

2Rout|Hpd|2 · RIN. (4.15)
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Here, RIN denotes ‘relative intensity noise’, given by RIN = 〈P 2
o 〉/〈Po〉2. In many cases,

these noise sources are band limited, and are strongly suppressed when operating at fre-

quencies above ∼1 GHz.

4.3.2 Thermal noise

Any resistive conductor displays random voltage fluctuations across its terminals, such that

it is kept in thermal equilibrium, in a manner consistent with the fluctuation-dissipation

theorem. These fluctuations are referred to as ‘Johnson–Nyquist’ noise [174], with a power

spectral density (PSD) given by [198]

NJ-N = ~Ω

[
1

exp (~Ω/kBT )− 1
+

1

2

]
, (4.16)

which at the high temperature limit, when T � ~Ω/kB, simplifies to the well known expres-

sion3 NJ-N ≈ kBT . This noise is present at any resistor, and in the microwave-photonic link

we are analyzing here, we need to take into account two resistors —one within the detector

and another at the RF input port of the intensity modulator— which both contribute to

the noise measured at the link output. The noise produced at the detector is given by Eq.

(4.16), however, the noise from the intensity modulator propagates through the microwave-

photonic link, and we need to account for amplification or loss which we describe using the

link gain parameter g. These two noise sources are uncorrelated, such that we can add their

contributions to the power spectral density (NJ-N + gNJ-N), and we define

Nth = ~Ω

[
1

exp (~Ω/kBT )− 1
+

1

2

]
(1 + g) , (4.17)

as the total microwave thermal-noise spectral density.

3. This can be derived by treating the electromagnetic field as an oscillator with two degrees of freedom
(electric and magnetic), and from the equipartition theorem we know that each degree of freedom will have
an average energy of kBT/2 [199].
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Figure 4.5: (a) Calculated spectral density of typical noise sources, assuming operation at
the quadrature point (Vb/V

DC
π = 0.5), and Vin/V

RF
π = 0.075. (b) Microwave-photonic link

gain and noise figure as a function of the modulator biasing voltage. While maximum gain is
achieved at the quadrature point (Vb = 0.5V DC

π ), noise figure is minimized at Vb = 0.77V DC
π .

The DC optical power on the detector is also shown (dashed, right axis).

4.3.3 Shot noise

In the absence of technical noise, light emitted by a laser can be described as a coherent

state, such that the photon arrival times at the detector are random and described by a

Poisson distribution4. These fluctuations result in a power spectral density given by [198]

Nshot = 2IDC qRout|Hpd|2, (4.18)

where q is the electron charge, and IDC is the DC photocurrent in the detector. Using

Eqs. (4.7) and (4.13) we can express the photocurrent in terms of optical power and the

modulator parameters, such that the shot noise spectral density as

Nshot = Pi

[
1 + cos (φ) J0

(
π
Vin

V RF
π

)]
ηqRout|Hpd|2, (4.19)

showing linear scaling with optical power. While there can be other noise sources at the

detector, we will consider shot noise as the dominant noise source associated with the

detection process [198]. In fact, in many cases, shot noise dominates the link noise floor,

4. At frequencies larger than ∼1 GHz this is a good assumption. However, for systems working at lower
frequencies, other technical noise sources should be examined.
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as shown in Fig. 4.5(a), where realistic microwave-photonic link parameters are used to

calculate the spectral density of the different noise sources.

4.3.4 EDFA noise

Just as in microwave systems, low-noise amplification is extremely valuable in microwave-

photonic applications, where amplification can be introduced in the optical domain. This

can be achieved using erbium-doped fiber amplifiers (EDFA), which are utilized in many

photonic systems, and here we consider additional noise sources resulting from the amplifi-

cation process. Amplified spontaneous emission (ASE) results in three noise contributions

in the RF domain; spontaneous emission beating with itself, spontaneous emission beating

with the signal, and the shot noise associated with the randomness of the emission. In most

microwave-photonic applications, the spontaneous-signal scattering is the dominant noise

source, given by [198]

NEDFA = 4Ponsp~ω (g0 − 1) η2Rout|Hpd|2, (4.20)

where g0 is the EDFA gain, and ω the optical angular frequency. The parameter nsp is the

spontaneous emission factor and is typically of order unity5.

4.4 Microwave link performance metrics

In this section, we will use the expressions we have derived for the RF power and noise

sources to analyze important RF figures of merit, and quantify the microwave-photonic link

performance. For this example, we consider a full microwave-photonic link, with a Mach-

Zehnder modulator used to convert the input microwave signal to the optical domain, and at

the link output, direct detection converts the modulated optical field back to the microwave

domain.

5. The spontaneous emission factor is given by nsp = (σ2N2)/(σ2N2−σ1N1), where N1 (N2) is the density
of atoms in the lower (upper) state of the amplifier transition, and σ1 (σ2) denotes the absorption (emission)
cross-section [164,198].
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4.4.1 Link gain

We focus on the linear RF response of the system, i.e., the output signal oscillating at

the same frequency as the input signal. We analyze the small-signal regime, such that

Vin � V RF
π , and by expanding Eq. (4.14) to first order (i.e., J1(x) ≈ x/2) we find a linear

relationship between the input and output RF powers at frequency Ω

g =
P

(Ω)
out

P
(Ω)
in

=
P 2
i

4
sin2 (φ)

(
π

V RF
π

)2

Rinη
2Rout|Hpd|2, (4.21)

which is defined as the small-signal gain. When expressing the gain on a log-scale (in units

of dB) it is typically denoted G. We can see that the half-wave voltage of the modulator

V RF
π determines the link gain, as it essentially describes the efficiency of the electro-optic

conversion, and the development of low-voltage modulators are an active area of research

[53,200].

While link gain is an important parameter, describing the overall amplification or loss

experienced by an RF signal propagating through the system, in many cases it can be

improved by simply adding amplifiers (either in the optical or in the microwave domain).

However, amplification will lead to higher noise and signal distortion, and it is important

to analyze the noise figure and dynamic range when characterizing a microwave link.

4.4.2 Noise figure

An important metric for microwave link performance is the noise figure, quantifying the

noise added by the system, defined as the ratio of the input to output signal-to-noise ratios

F =
SNRin

SNRout
=

P
(Ω)
in /Nin

P
(Ω)
out /Nout

≈
P

(Ω)
in /Nin

gP
(Ω)
in /Nout

=
Nout

Nin

1

g
. (4.22)

The approximation assumes the small-signal limit, such that we could express the output

power in terms of the input power and linear link gain. Using the link gain we calculated
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in Eq. (4.21), we have

F =
Nout

Nin

4
(
V RF
π /π

)2
P 2
i sin2 (φ)Rinη2Rout|Hpd|2

. (4.23)

The noise at input (Nin) and output (Nout) of the link is specific to the system, however,

it is convention to use the Johnson-Nyquist thermal noise as the input noise source, with

spectral density Nin = kBT at the high-temperature limit (valid at room temperature). It

is important to note that in Eqs. (4.22) and (4.23) we have assumed the noise spectral

density is constant over the measured bandwidth, such that the bandwidth is canceled in

the final expression. In the case of a nonuniform spectral density, the noise power needs to

be calculated by integrating the spectral density over the bandwidth of interest. We can see

that modulators with a low half-wave voltage will lead to better performance, reducing the

noise figure. When expressing the noise figure on a log-scale (in units of dB) it is commonly

denoted ‘NF’ rather than F (the linear measure of the noise figure F is sometimes referred

to as ‘noise factor’).

When considering a biasing voltage for the modulator at the link input, the quadrature

point (φ = π/2) will yield the highest link gain, as seen from Eq. (4.21) where g ∝ sin2(φ/2).

However, this might not be the case for optimizing the noise figure [198], as the link noise

floor can have a different scaling with the biasing point, as is the case with shot noise.

Using Eqs. (4.6) and (4.19), we have Nshot ∝ [1 + cos(φ)], and in the case of a shot-noise

dominated link, the noise floor will decrease as we approach the half-wave voltage of the

modulator. Fig. 4.5(b) shows the link gain and noise figure as a function of the biasing

point, taking into account RIN (Eq. (4.15)), thermal noise (Eq. (4.17)), and shot noise

(Eq. (4.19)). We can see that for the parameters used in this calculation, the optimal

biasing voltage to minimize the noise figure is Vb = 0.77V DC
π , compared to the maximum

gain point, where Vb = 0.5V DC
π (the quadrature point). While this method improves the

noise figure of the microwave-photonic link, it will limit its dynamic range, as we will see

in the next section. Additionally, this operation point results in lower optical power at the

modulator output, which needs to be considered in the system design.
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4.4.3 Dynamic range

In the small-signal limit, we saw that the microwave-photonic link shows a linear response,

described by the link gain. However, other frequency components can be generated in the

link due to the nonlinear response of various components in the system, which distort the

output signal. In the simple example we are analyzing here, we will consider the nonlinearity

resulting from the intensity modulation process, as can be seen from Eq. (4.7), where

additional frequency components are generated6. Furthermore, when the small-signal limit

is not valid, the output signal will deviate from the linear trend we have described. Due to

these effects, it is important to quantify the range over which we have linear, distortion-free

operation.

Spur-free dynamic range

We start by describing the spur-free dynamic range of order n, defined as the range of

input powers between the minimum detectable power (i.e., the noise floor) up to to the

appearance of the nth order spurious tone (P
(nΩ)
out ), as shown in Fig. 4.6. This dynamic

range can be calculated using [198]

SFDRn =

(
P

(Ω)
OIPn

PN

)(n−1)/n

, (4.24)

where PN is the noise spectral density integrated over some RF bandwidth BRF (i.e., PN =

NoutBRF), and OIPn denotes the output intercept point of the signal and spur (see Fig.

4.6).

For this example, we will calculate the second- and third-order intercept points by

equating the expressions from Eq. (4.7), approximating the Bessel functions to their first

6. Nonlinearities can also be present in other parts of the link, such as the detector, however, in many
practical cases the modulator is the dominant source of signal distortion.
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1 dB compression

Figure 4.6: RF figures of merit at a given frequency can be graphically evaluated from a
plot of the RF output power as a function of the input RF power. Linear extrapolations
are used to find the intercept points of the spurious tones.

non-vanishing order (J1(x) ≈ x/2, J2(x) ≈ x2/8, J3(x) ≈ x3/48), such that

1

4
sin2 (φ)

(
π

V RF
π

√
2RinP

(Ω)
IIP2

)2

=
1

64
cos2 (φ)

(
π

V RF
π

√
2RinP

(Ω)
IIP2

)4

,

1

4

(
π

V RF
π

√
2RinP

(Ω)
IIP3

)2

=
1

2304

(
π

V RF
π

√
2RinP

(Ω)
IIP3

)6

.

(4.25)

Solving for the input power results in

P
(Ω)
IIP2

=
8

Rin

(
V RF
π

π

)2

tan2 (φ) ,

P
(Ω)
IIP3

=
12

Rin

(
V RF
π

π

)2

.

(4.26)

Using the small-signal link gain (Eq. (4.21)) we can find the output intercept point (OIP)

P
(Ω)
OIPn

= gP
(Ω)
IIPn

, given by

P
(Ω)
OIP2

= 2P 2
i tan2 (φ) sin2 (φ) η2Rout|Hpd|2,

P
(Ω)
OIP3

= 3P 2
i sin2 (φ) η2Rout|Hpd|2,

(4.27)
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and finally arrive at the spur-free dynamic range

SFDR2 =

(
2
P 2
i tan2 (φ) sin2 (φ) η2Rout|Hpd|2

NoutBRF

)1/2

,

SFDR3 =

(
3
P 2
i sin2 (φ) η2Rout|Hpd|2

NoutBRF

)2/3

.

(4.28)

In many applications, the third-order spur-free dynamic range will be the limiting factor of

the link. First, when biasing the intensity modulator close to quadrature, the second-order

spur is strongly suppressed, and will not limit the system operation7. Additionally, unless

the system operates over an octave-spanning bandwidth, the second-order nonlinearity will

result in frequency components well outside the bandwidth of interest. In contrast, the

third-order nonlinearity can result in frequency mixing products well within the system

bandwidth.

It is important to note that we have derived the spur-free dynamic ranges caused by

the second and third harmonics, i.e., the system response at double and triple the input

frequency. These nonlinearities can also be quantified using a two-tone test, where two

frequencies are introduced at the link input and their mixing products are measured at

the output, yielding an intermodulation dynamic range smaller by a factor ∼2 (−3 dB)

compared to the expressions derived here.

Linear dynamic range

We turn to analyze the RF power range over which the output signal follows the linear,

small-signal link gain. We quantify this by calculating the range starting at the minimum

detectable power up to the point where the output deviates from the small-signal linear

trend, commonly defined at 1 dB of deviation, i.e., gP
(Ω)
in /P

(Ω)
out = 100.1. We compare the

7. This can be seen in Eq. (4.28) where SFDR2 ∝ tan2(φ) which diverges as we approach the quadrature
point φ = π/2.
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the linear trend from Eq. (4.21) to the exact expression derived in Eq. (4.7)

(
1

4

) (
π/V RF

π

)2 (
2RinP

(Ω)
in1dB

)
J1

2

(
(π/V RF

π )
√

2RinP
(Ω)
in1dB

) = 100.1, (4.29)

and solving8 for P
(Ω)
in yields the input RF power where the output RF power deviates from

the linear trend by 1 dB

P
(Ω)
in1dB

=
0.045765

Rin

(
V RF
π

)2
. (4.30)

Defining the compression dynamic range as CDR1dB = gP
(Ω)
in1dB

/PN , we arrive at

CDR1dB = 0.11292
P 2
i sin2 (φ) η2Rout|Hpd|2

NoutBRF
, (4.31)

which is maximized when the modulator is biased at quadrature (φ = π/2).

As an example, Fig. 4.7 presents the calculated output RF power in the fundamental

frequency, as well as the second- and third-order spurs as a function of input RF power,

for different modulator biasing points. The corresponding RF link parameters are given

in Table 4.1. We can see that in this example, as is the case in many systems, the spur-

free dynamic range is the limiting factor for distortion-free operation, and the compression

dynamic range will not limit performance. In our analysis, the limiting factor of the dynamic

range is the intensity modulator, as is the case in many systems, and linearization schemes

enhancing the dynamic range of electro-optic modulators will enhance the performance of

microwave-photonic links [201].

4.4.4 Optical amplification

Next, we introduce an optical amplifier (EDFA) into the microwave-photonic link and show

how the nonlinearity of the amplifier alters the link performance in a non-trivial way. We will

consider a simple scenario, where the amplifier is fully saturated9, assuming the amplifier

8. This can be calculated numerically.

9. A similar analysis can be performed when taking into account the saturation profile of the amplifier [202].
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Figure 4.7: Calculated microwave-photonic link performance for a modulator with a DC
half wave voltage of V DC

π = 3 V, biased at different voltages such that the DC phase is
(a) φ = π/8, (b) φ = π/4, and (c) φ = π/2 (the quadrature point). We can see that
at quadrature, the second-order spurious tone vanishes, consistent with the fact that even-
order sidebands are suppressed. In this example, we assume Pi = 50 mW of optical power,
η = 1 (A/W) and |Hpd| = 0.5, and impedances Rin = Rout = 50 Ω. The RF figures of merit
corresponding to these plots are shown in Table 4.1.

Table 4.1: Calculated RF figures of merit at different biasing points, corresponding to Fig.
4.7.

Biasing angle (rad) φ = π/8 φ = π/4 φ = π/2 φ = πVb/V
DC
π

G (dB) −12.0 −6.7 −3.7 RF link gain

NF (dB) 26.0 20.7 17.7 Noise figure1

OIP2 (dBm) 2.0 14.9 342.2 2nd order output intercept point2

SFDR2

(
dB Hz1/2

)
81.0 87.5 251.1 2nd order spur-free dyn. range3

OIP3 (dBm) 11.4 16.7 19.7 3rd order output intercept point4

SFDR3

(
dB Hz2/3

)
114.3 117.8 119.8 3rd order spur-free dyn. range5

OP1dB (dBm) −2.9 2.5 5.5 1 dB compression point

CDR1dB (dB Hz) 157.1 162.5 165.5 Linear dynamic range

In this example, we assume Pi = 50 mW of optical power, η = 1 (A/W) and |Hpd| = 0.5, and impedances
Rin = Rout = 50 Ω. The noise floor considered in this calculation is −160 dBm/Hz, corresponding to
shot noise (see Fig. 4.5(a)).
1 Nin is assumed to be thermal noise at room temperature (T = 290 K), such that Nin = kBT = −174
dBm/Hz.
2 Intermodulation OIP2 is 6 dB lower.
3 Intermodulation SFDR2 is 3 dB lower.
4 Intermodulation OIP3 is 4.8 dB lower.
5 Intermodulation SFDR3 is 3.2 dB Hz2/3 lower.
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has constant output power PEDFA. In this example, we are neglecting other properties

of the amplifier —such as additional noise when operating above the saturation point—

and treating the EDFA simply as a nonlinear gain element to demonstrate how additional

components can affect the link.

For a given optical power Po, the gain provided by the amplifier is γ = PEDFA/PDC,

such that the amplified RF signal is P amp
Ω = γPΩ, or equivalently, P amp

Ω = PEDFAPΩ/PDC .

Using Eq. (4.7), this gives us

P amp
Ω = PEDFA

2J1 (β) sin(φ)

1 + J0 (β) cos(φ)
sin(Ωt). (4.32)

For a small-signal input, we have

P amp
Ω = PEDFAβ tan (φ/2) sin(Ωt), (4.33)

where we have used the identity tan(x/2) = sin(x)/[1 + cos(x)], which grows as the phase

φ approaches π. The divergence is a result of our (unrealistic) assumption that the EDFA

is saturated, and has the same output power, regardless of the input power10. Fig. 4.8(a)

shows the optical power at frequency Ω (Eq. (4.33)) as a function of the biasing voltage.

We can see the optimal biasing point is dependent on the input RF voltage.

Fig. 4.8(b) shows the calculated RF noise power spectral density added in the amplifica-

tion process (Eq. (4.20)), showing how changing the biasing point affects the noise spectral

density. It is important to remember that this calculation assumes only noise generated by

the beat note of the spontaneous emission with the signal, which is the dominant term in

most practical cases. However, for low-power optical signals, the spontaneous-spontaneous

scattering and the spontaneously-induced shot noise should not be neglected, as well as the

fact that the assumption that the EDFA is saturated needs to be examined carefully.

We can calculate the output RF signal in this case of utilizing an optical amplifier,

10. At the limit of φ→ π the average optical power vanishes and our analysis clearly will not hold.
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Figure 4.8: (a) The optical power of the beat-note at frequency Ω, normalized to the output
power of a saturated EDFA, PEDFA. We can see that for small input voltages, the beat-note
will be enhanced when biasing off-quadrature, when the carrier power is suppressed. (b)
Calculated EDFA noise for different optical powers and biasing points, following Eq. (4.20).
(c) Calculated RF link gain and noise figure for a microwave-photonic link using an EDFA,
assuming V DC

π = 3. In these calculations, the EDFA gain is 27 dB, with a constant optical
output power of 50 mW.

P
(Ω)
out,amp, and the RF small-signal gain gamp = P

(Ω)
out,amp/P

(Ω)
in , given by

gamp = P 2
EDFA

(
π

V RF
π

)2

Rin tan2 (φ/2) η2Rout|Hpd|2, (4.34)

is shown in Fig. 4.8(c), as well as the noise figure from Eq. (4.22). We see that as the

modulator biasing voltage is increased above the quadrature point, the link gain grows while

the noise figure is decreased. As we have seen earlier, the limit of biasing close to the half-

wave voltage (i.e., Vb → V
(DC)
π ) should be examined carefully, as some of the assumptions

we have made do not apply. For the noise figure calculation, we have assumed thermal

noise at room temperature at the link input (Nin = kBT ) and the contributions of shot

noise (Eq. (4.19)), thermal noise (Eq. (4.17)) and EDFA noise11 (Eq. (4.20)) at the output

(i.e., Nout = Nshot +Nth +NEDFA).

11. We have neglected certain noise properties that can change the noise properties of the EDFA, such as
the effects of saturation on the spontaneous emission factor.
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Figure 4.9: Examples of microwave-photonic link applications. (a) The low-loss platform
provided by optical fibers, in combination with low-noise optical amplifiers, enables the
transmission of RF signals over a long distance. (b) Signal processing operations can be
introduced in the optical domain, expanding the capabilities of microwave-photonic links.
These can be implemented in optical fibers or integrated-chip platforms. (c) Illustration of
a microwave-photonic link between an RF transmitter and an antenna. (d) Illustration of
a microwave-photonic link between an RF antenna and an RF receiver.

4.5 Applications of microwave-photonic links

Up to this point, we have analyzed a link that is not designed to perform any signal pro-

cessing operations on the RF signal. This can be the case where the photonic link is used

to transmit RF signals over long distances, utilizing the low propagation losses in optical

fibers and the availability of low-noise amplifiers in the form of erbium-doped fiber amplifiers

(EDFA), as shown schematically in Fig 4.9(a). In this scenario, all signal processing (besides

amplification) is implemented directly on the RF signal, before or after the photonic link.

Alternatively, signal processing operations can be implemented in the optical domain

within the microwave-photonic link. These operations may include phase shifting [203–205],

analog to digital conversion (ADC and DAC) [206, 207], frequency conversion [208] and

filtering operations [209], illustrated schematically in Fig. 4.9(b). A microwave photonic

link can also be utilized within an RF transmitter or receiver, as illustrated in Figs. 4.9(c)

and (d), respectively. These can be utilized, for example, in cellular network antenna

remoting [210,211], and radar technologies [212,213].
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An important application in which microwave-photonics can enable new technological

capabilities is filtering microwave signals [209]. Microwave filtering is a crucial operation in

many systems, such as channelization of multiplexed signals, and suppression of interfering

signals and background noise. By performing filtering operations in the optical domain, the

advantages of the optical platform —such as its wideband operation capabilities— enable

the design of systems that would be challenging to implement in the microwave domain

alone [214,215]

Within an RF-photonic link, filtering operations can be implemented using multi-tap

architectures [216–218], splitting and combining the signal with different delays, achiev-

ing finite-impulse response (FIR) filters. Alternatively, resonant structures can be used to

produce filtering directly in the optical domain. These can be implement using Bragg grat-

ings [219, 220], or ring resonators [221, 222]. However, the optical and microwave domains

have vastly different frequency ranges (typically by a factor ∼105), and realizing narrow-

band optical filters can be challenging. For example, filters with ∼MHz spectral resolution

require resonators with ultrahigh quality factors (Q ∼108), which demands ultralow-loss

waveguides (∼0.1 dB/m). In the context of silicon photonics, there have been demonstra-

tions of narrowband optical resonators [223], however, these require a large footprint, as

well as sub-millikelvin temperature stability [51], and narrow-linewidth laser sources. Fur-

thermore, many of these demonstrations have been shown in the optical domain, but have

yet to be fully characterized in the context of a microwave-photonic link processing RF

signals. A thorough review of integrated microwave photonics can be found in Ref. [196],

and Ref. [209] reviews the field of integrated microwave-photonic filtering.

With the advancement of integrated photonics, the advantages of integrating photonics

and electronics on the same platform have also led to the development of programmable

photonic circuits, in which arrays of interferometers and resonators can be externally con-

trolled and programmed [224]. By routing the optical paths on-chip, a single device can

be programmed to perform multiple signal processing operations, including filtering, beam-

forming, and sensing [225, 226]. In the context of microwave photonics, reconfigurable

filters performing bandpass and notch filtering operations have been demonstrated using
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such strategies [227,228].

4.5.1 Utilizing Brillouin scattering in microwave photonics

The seemingly endless appetite for high bandwidth, rapid reconfigurability, and high spec-

tral resolution in modern communications is an impetus for new signal processing technolo-

gies that expand the capabilities offered by conventional RF circuits. One way to meet

these challenges is to harness the complementary benefits offered by optical and acoustic

wave signal processing technologies. Acoustic wave signal processing has long been a cru-

cial part of modern RF systems [140,229]. Signal operations requiring narrowband filtering

and long delays invariably rely on electro-mechanical transduction to access slow-moving

and long-lived acoustic waves, which are necessary to realize such operations within a small

footprint [140,230,231].

When considering integrated photonic devices, accessing acoustic waves is typically im-

plemented in piezoelectric material platforms using inter-digitated transducers (IDT) to

electrically drive surface acoustic waves [232–235]. However, the lack of piezoelectric cou-

pling in silicon makes the design of such silicon devices challenging, necessitating the inte-

gration of additional material layers [236], or utilizing thermoelastic effects [237].

Alternatively, Brillouin scattering —namely the coupling of light and acoustic phonons—

enables direct access to the narrowband acoustic-wave properties, within the large-bandwidth

optical domain [34,35,238]. Brillouin-based filters, sensors, and oscillators were first demon-

strated using discrete-component optical fiber technologies [68, 69, 91, 129], and more re-

cently, have been developed on-chip through the progress made in Brillouin-active waveguide

design [35, 56, 144, 239]. The long-lived acoustic waves that mediate Brillouin interactions

yield narrow spectral features, similar to the role played by acoustic waves in microwave

filters [140, 229], with frequencies in the microwave range, and are further tunable through

optical wavelength and device geometry [69,100,240]. These features make Brillouin-based

devices a promising candidate for microwave-photonic applications such as filters [144,241],

delay lines [129, 135], oscillators [38, 242] and spectral analysis [243, 244]. Further, the

recent demonstrations of Brillouin scattering in silicon [63–65] could facilitate low-cost,
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high-volume production using CMOS-compatible fabrication techniques, and enable the

integration of photonic and electronic components on the same platform [46,47,245].

When considering microwave-photonic filters, Brillouin-based technologies offer many

advantages compared to other strategies, as the acoustic resonances are in the microwave

range, and are directly accessible from the optical domain. Stimulated Brillouin scattering

can result in the energy transfer from a strong pump tone to a Stokes tone, given that

the phase-matching conditions are met, as was discussed in Chapter 2. The fact that the

scattering occurs only around a narrow band —determined by the acoustic mode lifetime—

enables the design of microwave-photonic filters with a spectral resolution of <10 MHz.

Such filters were first demonstrated in optical fiber [69,100,248], where the long interaction

length enables strong Brillouin scattering, and more recently in chip-integrated platforms, in

which the tight confinement of the optical and acoustic fields to a small cross-section results

in a strong interaction [144, 247, 249]. A recent review of the field of integrated Brillouin

photonics is presented in Ref. [35], and a discussion of recent advances in Brillouin-based

microwave-photonic subsystems, such as filters and phase shifters can be found in Ref. [250].

The underlying concept in the vast majority of Brillouin-based microwave-photonic fil-

tering schemes includes modulation of the RF signal onto an optical carrier, resulting in

optical sidebands. By introducing another strong optical tone to serve as a ’Brillouin pump’

wave, stimulated scattering can be used to amplify or suppress a specific spectral region

of an optical sideband. At the detector, the beat note of the optical carrier and the pro-

cessed sidebands results in the suppression or enhancement of a narrow spectral band that

is determined by the Brillouin bandwidth. Examples of such schemes are presented in Fig.

4.10. In these filters, backward Brillouin scattering is typically used, enabling the tuning

of the filter center frequency and bandwidth by shifting the wavelength of the Brillouin

pump and tailoring its spectral characteristics [246, 251]. It is important to note that the

introduction of Brillouin gain also results in spontaneous scattering, adding excess noise

within the Brillouin bandwidth. In the case of notch-filtering operations, the noise is in the

stop-band of the filter and may not be a problem. However, in the case of bandpass filters,

the Brillouin noise must be taken into account when analyzing the filter noise figure and
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Figure 4.10: Three examples utilizing backward Brillouin scattering in a microwave-photonic
filtering scheme: (a) The RF signal is modulated onto an optical carrier using a single-
sideband modulator. By introducing a red-detuned Brillouin pump, an anti-Stokes Brillouin
process scatters light out of the sideband around a narrow spectral band. At the detector,
the RF beat note between the carrier and the sideband takes on the spectral shape of
the sideband, showing a dip at the Brillouin frequency, essentially performing a notch-
filtering operation [246]. (b) The RF signal is modulated onto the carrier using an advanced
modulation technique such that the two sidebands around the optical carrier are out of
phase, and are unequal in amplitude. By introducing a blue-detuned Brillouin pump, a
narrow band of the weaker sideband is amplified, such that the beat notes produced by
the two sidebands cancel out at the Brillouin frequency, resulting in strong suppression of
the RF signal [142, 246]. (c) The RF signal is modulated onto the optical carrier using
a phase modulator, resulting in sidebands equal in amplitude and out of phase. Using
a Stokes process, a narrow spectral band within one of the sidebands is amplified. At
the detector, the beat notes of the two sidebands with the carrier cancel each other out
(as they are out of phase) except for the narrow band that was amplified, resulting in
a bandpass frequency response [247]. CIRC: circulator, SSB: single-sideband modulator,
MOD: advanced modulator, PM: phase modulator.



CHAPTER 4 97

dynamic range, as it may determine the link noise floor.

An alternative approach to performing Brillouin-based microwave-photonic filtering uti-

lizes the nonlocal optical response enabled by forward Brillouin scattering, which was pre-

sented in Chapter 3. Using a photonic-phononic emit-receive (PPER) scheme, a modulated

microwave signal can be transduced between the optical and acoustic domains, taking on

the spectral shape of the acoustic modes in the process. Additionally, this strategy enables

the design of multi-pole filters with sharper frequency response, and higher out-of-band

suppression [186]. Such filters have recently demonstrated ∼MHz wide filtering in a silicon

platform [187] and can be utilized for both bandpass, as well as notch filtering operations,

as will be discussed in the next chapters.

4.6 Conclusion

In this chapter, we have introduced the concept of an analog microwave-photonic link and

derived some of the important figures of merit that characterize its performance. We have

seen how the modulator parameters, namely the half-wave voltage, are crucial for the per-

formance of a microwave-photonic link as it will determine the link gain and noise figure,

and the development of high-performance modulators will directly enhance the capabilities

of future microwave-photonic systems. Additionally, we have seen that in the case of an

intensity modulator, the biasing point can play an important role in the dynamic range of

the link and should be considered when analyzing a system. While we have examined an

intensity modulator based link, a similar analysis can be done in the case of phase modula-

tion [198], however, the analysis method and the figures of merit that were presented here

are general.

We have discussed possible noise sources present in microwave-photonic systems, from

both the optical and the microwave domains, as well as excess noise that accompanies

optical amplification. While we have examined typical noise sources, an analysis should

be performed for any system of interest, as additional system-specific noise can be present.

For example, in many Brillouin-based microwave-photonic filters, scattering of light from
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thermally excited acoustic waves is the dominant noise source, as we shall see in the next

chapter.

Finally, we have discussed how additional functionalities can be implemented in the

optical domain, processing the RF signals within the photonic link. The opportunities

offered by the optical platform have enabled the development of multiple devices and systems

that could be very challenging to achieve with typical microwave components. In this

context, utilizing Brillouin scattering is a promising strategy, as the acoustic waves taking

part in the process are in the microwave range, have sharp spectral features, and can be

tailored to accommodate multiple applications such as filtering and sensing. Additionally,

with the advances in integrated photonics, chip-scale systems including both optical and

electrical circuits can be integrated within a small footprint.



Chapter 5

Using photonic-phononic emit-receive

devices for microwave filtering

5.1 Introduction

Microwave filtering is a crucial component in radio-frequency systems, used to suppress

unwanted interference and noise from signals of interest, as well as separating wideband

signals into different spectral components [209]. Microwave photonic systems offer many

capabilities that are difficult to achieve using typical RF components, such as wideband

operation, large range tunability, and low loss. Furthermore, rapid progress in the field of

silicon photonics has enabled the integration of high-speed modulators [50, 53], amplifiers

[54,64,252] and detectors [49] with electronic and photonic circuitry [46,57,59,245], opening

the door to miniaturization of radio-frequency photonic circuits having signal-processing

performance that is competitive with established microwave technologies [45,214]. However,

it remains challenging to implement narrowband filtering using all-optical techniques, as

ultralow-loss waveguides are needed to store signals for long periods of time [253–255].

Narrowband filtering operations can also be realized by accessing long-lived acoustic

phonons through stimulated Brillouin scattering (SBS), a nonlinear three-wave interaction

that produces coupling between two optical waves and a GHz-frequency elastic wave. While

99



CHAPTER 5 100

Brillouin interactions have been used to implement an array of filtering and delay operations

[68,135,142,144,246,249,256], in this chapter we focus on bandpass filtering.

Brillouin-based bandpass filtering operations are conventionally achieved by making use

of the narrowband optical amplification supplied by the stimulated Brillouin scattering

process [141, 247]. While such amplification-based filtering strategies have been used to

synthesize highly desirable response functions [142, 246, 256], the high levels of Brillouin

gain necessary to implement these schemes also enhance unwanted noise sources that can

degrade the performance of the RF link [144]. Other filtering schemes have demonstrated

bandpass filtering by utilizing Brillouin-induced loss on both sides of the desired pass-band,

achieving a lower noise figure at the expense of the filter bandwidth, out-of-band rejection,

and stop-band range [144]. In many cases, the noise figure, dynamic range, and out-of-band

rejection of such filters do not meet the increasingly stringent requirements of numerous

applications [196,257].

Alternatively, Brillouin interactions can produce narrowband filtering without using an

amplification process by using a photonic-phononic emit-receive (PPER) device. Within a

PPER device, the signal is converted to an acoustic wave that transfers information between

two spatially distinct waveguides over a narrow spectral band, utilizing the nonlocal nature

of forward Brillouin interactions, as was described in Chapter 3. This scheme yields a

different design space from other Brillouin-based microwave-photonic filters, which may

prove advantageous for many practical applications. For example, the spatial separation

of the optical waves decouples the input signal propagating in the ‘emit’ waveguide from

spontaneous scattering within the ‘receive’ waveguide, which is a fundamental noise source in

Brillouin-based devices. In order to design and improve PPER-based filters, it is necessary

to identify system parameters that will provide the greatest opportunity to achieve high

performance.

In this chapter, we present a systematic analysis of a microwave-photonic filter designed

around a PPER device and identify the key characteristics of the system that dictate the link

performance. Building on the analysis that was presented in Chapter 4, our model of the

system includes the effects of noise associated with the laser sources and optical detection,
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as well as excess noise produced by spontaneous Brillouin scattering within the PPER

device. Our analysis reveals that the spontaneous Brillouin scattering from thermally-

populated acoustic phonons is the dominant noise source within the system over a range

of operating conditions. Nevertheless, we show that this strategy holds the potential for

high performance based on commercially available modulators and detector technologies.

Furthermore, with the development of new electro-optic modulator technologies [53,200,258]

and high power handling capabilities [254,259,260], we show how PPER based filters with a

high RF-link gain (>45 dB), a large dynamic range (>110 dB Hz2/3) and a low noise figure

(<10 dB) are possible.

5.2 Operation scheme

Throughout this chapter, we consider the operation of a PPER device within a microwave-

photonic link of the type seen in the block diagram of Fig. 5.1(a). This system is used

to filter a wideband microwave signal that enters through the input RF port and exits at

the output RF port after taking on the spectral characteristics produced by the acoustic

transfer function of the device.

5.2.1 Dynamics of the optical and acoustic fields

We begin by describing how the input RF signal is shaped as it is converted between the

microwave, optical, and acoustic domains when passing through the system depicted in Fig.

5.1(a). The incident RF signal, seen in panel (i), is encoded on an optical carrier produced

by Laser A, panel (ii), using an intensity modulator (IM), as shown in panel (iii). The

modulated field is injected into the ‘emit’ waveguide of the device, denoted waveguide A.

As the laser field traverses the device, a portion of the signal wave is transduced as acoustic

waves with microwave frequency over a narrow spectral band, determined by the device

geometry [44, 161, 162], as seen in panel (iv). A second laser field produced by Laser B,

seen in panel (v), is injected into a spatially separated ‘receive’ waveguide (waveguide B)

that is used to sense the transduced acoustic wave. This spectrally-filtered replica of the
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Figure 5.1: (a) Operation scheme of a PPER-based microwave-photonic filter. The RF
input (i) is used to modulate a laser tone (ii), such that the RF information is in the optical
sidebands (iii) and directed into waveguide A of the PPER. A narrowband acoustic field (iv)
mediates the information to waveguide B and modulates a separate optical tone (v) in the
form of phase modulation (vi). The phase modulation sidebands are demodulated (vii) and
the filtered RF information is retrieved at the filter output (viii). IM: intensity modulator,
DEMOD: phase demodulation. (b) Normalized frequency response of a PPER-based filter,
for both a single- and two-pole design. The two-pole filter yields a sharper frequency roll-
off, with an improvement of 28 dB out-of-band rejection at frequencies 100 MHz from the
pass-band center. (c) Magnified view of the pass-band center shows a flat-top frequency
response, closer to an ideal bandpass filter. The filter parameters used for the calculations
are presented in Table 5.2. Adapted from Ref. [155] © 2020 IEEE.
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microwave signal is encoded on the light propagating in the ‘receive’ waveguide as pure phase

modulation, illustrated in panel (vi). The phase-modulated signal wave exiting the ‘receive’

waveguide is then passed through a demodulator (vii) that converts phase modulation into

intensity modulation and is converted back to the microwave domain at the output (viii).

The resulting output RF signal is filtered, taking on the shape of the acoustic transfer

function. The PPER device can be designed to produce single-pole acoustic frequency

response, as well as mutli-pole response (see Section 3.3), as shown in Figs. 5.1(b,c).

Next, we outline the analytical form of the signal wave as it traverses the microwave-

photonic filter, which allows us to identify key parameters of the system. At the input port,

an RF voltage with amplitude Vin and frequency Ω modulates an optical carrier with power

P (A) and optical frequency ω
(A)
0 . The intensity-modulated optical field can be described

by [198]

E
(A)
in (t) =

√
P (A)e−iω

(A)
0 t

(
i√
2

+
1√
2

exp

[
−i
(
π
Vin

Vπ

)
sin (Ωt)

])
, (5.1)

where Vπ is the half-wave voltage of the modulator, which is assumed to be biased at

quadrature. Using the Jacobi-Anger expansion this can be expressed as

E
(A)
in (t) =

√
P (A)e−iω

(A)
0 t

(
i√
2

+
1√
2

∑
n

Jn

(
π
Vin

Vπ

)
e−inΩt

)
, (5.2)

where Jn(·) denotes an nth order Bessel function. Since the field is comprised of an array of

optical tones spaced apart by frequency Ω, we write the amplitude of each tone as a
(A)
n (z)

and a
(B)
n (z), oscillating with frequency ω

(A)
0 + nΩ and ω

(B)
0 + nΩ for waveguides A and

B, respectively, and normalized using Eout(t) =
√
~ω0v

∑
n ane

−i(ω0+nΩ)t, such that the

optical power is given by P (A) = 〈|Eout|2〉 [172]. By collecting terms with similar time

dependence, the intensity-modulated field at the input to waveguide A (Eq. (5.2)) can be

expressed in terms of the field amplitudes

a(A)
n (0) =


a

(A)
0 (0)

[
i√
2

+ 1√
2
J0

(
π Vin
Vπ

)]
n = 0

a
(A)
0 (0) 1√

2
Jn

(
π Vin
Vπ

)
n 6= 0.

(5.3)
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This field drives a coherent acoustic mode through forward Brillouin scattering [44], with

a displacement amplitude determined by the acoustic resonance properties, the Brillouin

coupling rate, and the input optical power.

A second optical source is directed into waveguide B with optical power P (B) and optical

frequency ω
(B)
0 , such that E

(B)
in (t) =

√
P (B)e−iω

(B)
0 t. In terms of field amplitudes, this is given

by

a
(B)
0 (0) =

√
P (B)

~ω(B)
0 v

, a
(B)
n 6=0(0) = 0. (5.4)

As we have seen in Chapter 3, the equations of motion of the optical and acoustic field

amplitudes propagating through a PPER device (parallel to the z axis) can be described by

∂

∂z
a(A)
n = − i

v

(
gba

(A)
n−1 + g∗b†a

(A)
n+1

)
,

∂

∂z
a(B)
n = − i

v

(
gba

(B)
n−1 + g∗b†a

(B)
n+1

)
,

b = −i
(

1

i(Ω0 − Ω) + Γ/2

)∑
n

g∗
(
a†

(A)
n a

(A)
n+1 + a†

(B)
n a

(B)
n+1

)∣∣∣∣
z=0

,

(5.5)

where b denotes the acoustic field, with a resonant frequency Ω0 and dissipation rate Γ, g is

the acoust-optic coupling rate, and v is the optical group velocity, which is assumed equal

in both waveguides A and B. In our analysis, we neglect optical loss in the waveguides, and

the fluctuations associated with the loss of the acoustic mode will be treated in Section 5.3.

Substituting the initial conditions from Eqs. (5.3) and (5.4) into Eq. (5.5) gives us the

phonon field

b = −
(

1

i(Ω0 − Ω) + Γ/2

)
g∗
∣∣∣a(A)

0 (0)
∣∣∣2 J1

(
π
Vin

Vπ

)
, (5.6)

and using this expression together with Eq. (5.5) yields

∂

∂z
an =

i

v
|χ| |g|2

∣∣∣a(A)
0 (0)

∣∣∣2 J1

(
π
Vin

Vπ

)(
an−1e

iφ + an+1e
−iφ
)
, (5.7)

for each of the waveguides A and B. Here, we have defined the frequency response χ =

[i(Ω0 −Ω) + Γ/2]−1, and φ = arg (χ). In terms of Brillouin gain and optical power, we can
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express this as

∂

∂z
an = i

Γ

4
|χ|GBP

(A)J1

(
π
Vin

Vπ

)(
an−1e

iφ + an+1e
−iφ
)
, (5.8)

where GB = 4|g|2/(~ωv2Γ) and P = ~ωv|a|2, as was discussed in Section 2.3.1.

The recurrence relation obtained in Eq. (5.8) is consistent with a modified Bessel func-

tion following I ′n = 1
2(In−1 + In+1), such that the optical fields can be written as a linear

combination an(z) = eiφn
∑

m cn,mIm
(
i(Γ/2)|χ|GBP

(A)J1(πVin/Vπ)z
)
. We can find the co-

efficients cn,m by using the identity Im(0) = δm,0, such that cn,m = an−m(0)e−iφ(n−m), and

by using the relation Im(x) = i−mJm(ix) we have

an(z) =
∑
m

an+m(0)imJm (βin) e−iφm, (5.9)

for both waveguides A and B, where we have defined βin = (Γ/2)|χ|GBP
(A)J1(πVin/Vπ)z.

We can now plug in the initial conditions from Eq. (5.4) to calculate the spatial evolution

of the field amplitude in waveguide B

a(B)
n (z) = a

(B)
0 (0) (−i)n J−n (βin) eiφn. (5.10)

Fig. 5.2 shows the power of the different optical tones in the two waveguides as a function

of βin, following Eq. (5.9) and the initial conditions (Eqs. (5.3) and (5.4)), where we can

see the power oscillating in the different tones, as described by the Bessel functions.

Summing all the mode amplitudes in waveguide B,

E
(B)
out (t) =

√
~ω(B)

0 v
∑
n

a(B)
n e

−i
(
ω

(B)
0 +nΩ

)
t
, (5.11)

and using the Jacobi-Anger expansion
∑

n i
nJn(z)eixn = eiz cosx we can rewrite the field at

the output

E
(B)
out (t) =

√
P (B) e−iω

(B)
0 t exp

[
i βin cos (Ωt− φ)

]
, (5.12)

showing a pure phase modulation of the optical tone. The modulation index is determined
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Figure 5.2: Normalized power of the optical tones, given an intensity-modulated input into
waveguide A, and a single tone input into waveguide B. In each waveguide, the pump tone
is denoted in black, Stokes (red-shifted) tones in red, and anti-Stokes (blue-shifted) tones
are shown in blue. Adapted from Ref. [155] © 2020 IEEE.

by the system and device parameters, given by

βin =
Γ

2
|χ(Ω)| J1

(
π
Vin

Vπ

)
GBP

(A)L, (5.13)

where Γ is the acoustic dissipation rate, χ(Ω) is the frequency response of the acoustic

resonance, and J1(·) denotes a Bessel function of the first order, describing the power in

the first sidebands of the intensity-modulated input field. The Brillouin gain GB is a metric

for the strength of the light-sound interaction, and L the length of the region where the

Brillouin coupling takes place.

The same analysis can be repeated for PPER devices utilizing two coupled acoustic

modes, as was discussed in Chapter 3. In this case, the frequency response follows a two-

pole lineshape χ(2 pole) = ([i(Ω0 − µ − Ω) + Γ/2]−1 − [i(Ω0 + µ − Ω) + Γ/2]−1)/2, where

µ denotes the coupling rate between the two acoustic modes taking part in the Brillouin

process. This scheme results in a response with sharp frequency roll-off, as shown in Figs.

5.1(b,c), and strong out-of-band suppression. The ability to achieve two-pole Brillouin-

based filters is unique to the PPER scheme, and could also enable higher-order multi-pole

filtering (see Section 3.3.2).

We can also analyze the field at the output of waveguide A by substituting in the input
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mode amplitudes from Eq. (5.3) into Eq. (5.9), giving us

a(A)
n (z) = a

(A)
0 (0)

∑
m

imJm (βin) e−iφm
[

1√
2
Jn+m

(
π
Vin

Vπ

)
+

i√
2
δn+m,0

]
, (5.14)

where δi,j denotes the Kronecker delta. Summing all the mode amplitudes (see Eq. (5.11)),

and using a similar derivation to the one we had for waveguide B, we arrive at

E
(A)
out (t) =

√
P (A) e−iω

(A)
0 t
∑
n

e−inΩt

[
1√
2
Jn

(
π
Vin

Vπ

)
+

i√
2
δn,0

]
︸ ︷︷ ︸

E
(A)
in (t)

exp [i βin cos (Ωt− φ)] ,

(5.15)

showing that the input (Eq. (5.2)) undergoes pure phase-modulation. Calculating the beat-

note at frequency Ω reveals that it is unchanged as the field propagates in waveguide A,

i.e.,
∑

n a
(A)
n

†
(z) a

(A)
n+1(z) = |a(A)

0 (0)|2J1(πVin/Vπ).

The forward Brillouin dynamics utilized in these devices have interesting advantages

when considering noise and scalability. The acousto-optic interaction results in phase mod-

ulation, such that the intensity envelope of the light propagating through the system remains

unchanged, regardless of the strength of the nonlinear interaction. Similarly, the scattering

produced by thermally-excited phonons results in phase fluctuations alone, which do not

affect the intensity envelope and the driven coherent phonon field. This results in no degra-

dation of information encoded in the form of optical intensity modulation when the light

field propagates through the device [187]. These properties can enable cascading of multiple

devices in series without losing signal fidelity, further broadening their technological impact.

5.2.2 Signal demodulation using balanced detection

Next, we turn to analyze the conversion of the signal from the optical domain back to the

microwave domain. As we have just seen, the PPER output encodes the signal in the form

of phase modulation, and since a photodetector is not sensitive to the phase of light, a

phase demodulation scheme needs to be used to retrieve the RF signal. Numerous schemes

can be used for demodulation [198, 261, 262], and we will start by considering the use of
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an unbalanced Mach-Zehnder interferometer (MZI), illustrated schematically in Fig. 5.3(a).

The MZI is composed of a directional coupler, a time delay τ on one of the two interferometer

arms, and a second coupler, and is followed by a pair of balanced photodetectors. This can

be described in terms of matrix operations on the input field amplitudes [198]

E1(t)

E2(t)

 =
1

2

1 i

i 1


Γ̂ (τ) 0

0 1


1 i

i 1


Eout(t)

0

 , (5.16)

where we assume ideal lossless couplers with an equal splitting ratio (50:50), and Γ̂ (τ) is

a time-delay operator, such that Γ̂ (τ)E(t) = E(t − τ). The input to the MZI is the field

from the output of waveguide B, denoted Eout(t) and given in Eq. (5.12), such that at the

output of the MZI we have

E1 =
1

2

(
Eout(t− τ)− Eout(t)

)
, E2 =

i

2

(
Eout(t− τ) + Eout(t)

)
. (5.17)

Each of the two MZI output fields is directed to photodetector, as illustrated in Fig.

5.3(a), and the photocurrent generated in each of the detectors I(t) = η|E(t)|2 is subtracted

Ibal(t) = η
(
|E2(t)|2 − |E1(t)|2

)
, where we assume the two detectors have equal responsivities

a b
Notch Filter

τ
Delay

Figure 5.3: (a) An unbalanced MZI splits the input field and adds a phase shift corre-
sponding to a time delay τ to one of the two arms. The two interferometer arms are then
combined using another coupler and detected using two photodetectors. The photocurrent
of the detectors is subtracted from each other for balanced detection. (b) An alternative
phase demodulation scheme, using a narrowband notch filter to eliminate one of the optical
sidebands. Adapted from Ref. [155] © 2020 IEEE.
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η. Using Eq. (5.17), this gives us the photocurrent

Ibal(t) =
1

2
η
(
E∗out(t− τ)Eout(t) +Eout(t− τ)E∗out(t)

)
= ηRe

(
E∗out(t− τ)Eout(t)

)
, (5.18)

and plugging in the output field from the device, (Eq. (5.12)) yields

Ibal(t) = ηP (B) Re
(
e−iω0τ exp

[
i βin

(
cos (Ωt− φ)− cos (Ω(t− τ)− φ)

)])
. (5.19)

Using trigonometric and Bessel-function identities, we can rewrite the expression above as

Ibal(t) = ηP (B) Re
(
e−iω0τ

∑
n

Jn

(
2βin sin (Ωτ/2)

)
e−in(Ωt−Ωτ/2−φ)

)
, (5.20)

which is the general form for the photocurrent after demodulation.

Next, we analyze the photocurrent component oscillating at frequency Ω, as this is the

frequency of the signal at the input to the system. We isolate this frequency component by

keeping only the n = ±1 terms in the sum from Eq. (5.20), and using the Bessel function

property J1(x) = −J−1(x), we have

IΩ
bal(t) = ηP (B)J1

(
2βin sin (Ωτ/2)

)
×
(

cos (Ωt− Ωτ/2− φ+ ω0τ)− cos (Ωt− Ωτ/2− φ− ω0τ)
)
,

(5.21)

which can also be expressed as

IΩ
bal(t) = −2ηP (B)J1

(
2βin sin (Ωτ/2)

)
sin (Ωt− Ωτ/2− φ) sin (ω0τ). (5.22)

We can see from this expression that the MZI time-delay τ needs to be chosen with respect

to both the optical frequency ω0 as well as the RF input frequency Ω. For the rest of our

analysis, we will assume that ω0τ is set to maximize the photocurrent, such that ω0τ =

π(m+ 1/2) (where m is an integer).
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Finally, we can calculate the output RF power at frequency Ω

PRF
out (Ω) = 2

[
ηP (B)J1

(
Γ |χ(Ω)| J1

(
π
Vin

Vπ

)
GBP

(A)L sin (Ωτ/2)

)]2

Rout|Hpd|2, (5.23)

where we have used PRF
out = 〈I2

Ω〉Rout|Hpd|2, and Rout, Hpd denote the output impedance and

the photodiode circuit efficiency, respectively, and we have expressed βin explicitly using Eq.

(5.12). We see that the demodulated RF signal at the output of the microwave-photonic link

is determined by the optical powers, the Brillouin-active device length, and the properties

of the intensity modulator and the detector. We also notice that the frequency dependence

of the output RF signal is determined by the acoustic frequency response χ(Ω), as well as

the time-delay τ .

5.3 Possible noise sources

Now we turn to examine possible noise sources in the PPER-based microwave-photonic

link, which ill be necessary for our analysis of its performance metrics. Since our filtering

scheme utilizes the optical, acoustic, and microwave domains to implement filtering, a full

description of the link properties requires us to consider noise sources from all these different

domains. Following the standard convention in microwave photonics [198], we express the

noise power per unit frequency as

Nout = kBT + gkBT+2qηP (B)Rout|Hpd|2

+
(
ηP (B)

)2
Rout|Hpd|2

(
RIN + RINphase + RINB

)
.

(5.24)

The first term in Eq. (5.24) is the RF thermal noise (‘Johnson–Nyquist’ noise) at the

detector, where T denotes the temperature and kB is the Boltzmann constant. The second

term is the RF thermal noise at the link input after propagating through the filter, with an

RF link gain g (g will be analyzed in the next section). The third term is due to shot noise,

where q is the electron charge and scales linearly with the optical power incident on the

detector. The first relative intensity noise (RIN) term accounts for intensity fluctuations
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from the optical sources, which are usually negligible at frequencies over a few GHz. The

next term RINphase accounts for the demodulation at the device output, turning phase

fluctuations into intensity, such that phase noise from the laser source is converted to

intensity noise. Assuming the phase noise has a Lorentzian spectral lineshape with full-

width at half-maximum γ, it has been shown that detection using an MZI will result in a

noise power spectral density given by [198,263,264]

RINbal
phase = e−γτ

(
2γ

γ2 + Ω2

)(
cosh (γτ)− cos (Ωτ)

)
. (5.25)

The last term in Eq. (5.24) is the result of the thermal occupation of the acoustic

modes participating in the Brillouin scattering process. At non-zero temperature, thermally

driven fluctuations will add phase noise to the optical field in the ‘receive’ waveguide,

which can also be described in terms of spontaneous forward Brillouin scattering [157,172].

More specifically, the thermally occupied phonon population results in light scattering to

sidebands spaced Ω0 around the optical frequency ω0 [172]. Assuming a single-tone input

into the waveguide, the optical field at the output can be described by

Eout(t) =
√

~ω0v
(
a−1e

−i(ω0−Ω0)t + a0e
−iω0t + a1e

−i(ω0+Ω0)t
)
, (5.26)

where the amplitudes a−1 and a1 are the sidebands generated by the spontaneous scattering.

The sidebands’ field amplitudes are given by [172,175,195]

a−1(z, τ) = −ig
∗

v
a0

∫ τ

0
dτ ′
∫ z

0
dz′η†(z′, τ ′)e−

Γ
2

(τ−τ ′),

a1(z, τ) = −ig
v
a0

∫ τ

0
dτ ′
∫ z

0
dz′η(z′, τ ′)e−

Γ
2

(τ−τ ′),

(5.27)

where η(z, t) is the Langevin force corresponding to the phonon dissipation, such that

〈η(z, t)〉 = 0 and 〈η†(z, t)η(z′, t′)〉 = nthΓδ(z − z′)δ(t − t′), where nth is the mean thermal

phonon occupation number. At room temperature, when nth � 1, this thermal occupation

can be approximated using nth ≈ (kBT )/(~Ω0), where T denotes the temperature, and kB

is the Boltzmann constant.
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Spontaneous Brillouin scattering taking place in the ‘receive’ waveguide (waveguide B)

will be detected at the link output, and contribute to the noise of the microwave-photonic

link. For the case of the MZI balanced detection scheme described here, we can calculate

the photocurrent generated by this noise source IN(t) by substituting Eqs. (5.26) and (5.27)

into Eq. (5.18), and using the Wiener-Khinchin theorem to find the power spectral density

SRF
N (Ω) = Rout|Hpd|2

∫
dt′e−iΩt

′〈IN(t+ t′)IN(t)〉. (5.28)

Keeping terms oscillating around frequency Ω0 yields

SN
RF
bal(Ω) = 4η2 ω0

Ω0
GBP

(B)2
LkBTRout|Hpd|2

×

[
sin2 (Ωτ/2)

(
(Γ/2)2

(Γ/2)2 + (Ω− Ω0)2
+

(Γ/2)2

(Γ/2)2 + (Ω + Ω0)2

)

−
Ω0Γe−(Γ/2)τ

(
(Γ/2)2 − Ω2 + Ω2

0

)
sin (Ω0τ)

[(Γ/2)2 + (Ω− Ω0)2] [(Γ/2)2 + (Ω + Ω0)2]

]
,

(5.29)

where we have used the fact that the MZI is operating at quadrature (e−2iω0τ = −1).

As we will see in the next section, maximum link gain is achieved when the time delay is

set such that Ω0τ/2 = π(m+1/2), and will be the operating point of the microwave-photonic

link. At this setting, the spectral density will be

SN
RF
bal(Ω) = 4η2 ω0

Ω0
GBP

(B)2
LkBTRout|Hpd|2 sin2 (Ωτ/2)

×

[
(Γ/2)2

(Γ/2)2 + (Ω− Ω0)2
+

(Γ/2)2

(Γ/2)2 + (Ω + Ω0)2

]
.

(5.30)

Integrating a narrow RF bandwidth BRF centered around Ω, will yield the noise power

PNbal = 8η2 ω0

Ω0
GBP

(B)2
LkBTBRFRout|Hpd|2 sin2 (Ωτ/2)

(
Γ

2

)2

|χN (Ω)|2 , (5.31)

where BRF is in units of Hz, and we have denoted the frequency spectrum of the spontaneous
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Brillouin scattering as χN (Ω). In terms of RIN, this can by expressed by

RINbal
B = 8

ω0

Ω0
GBLkBT sin2 (Ωτ/2)

(
Γ

2

)2

|χN (Ω)|2 , (5.32)

to be consistent with Eq. (5.24).

For a sigle-pole filter, utilizing a single acoustic mode in the PPER, the spontaneous

scattering follows a Lorentzian lineshape |χN |2 =
[
(Ω− Ω0)2 + (Γ/2)2

]−1
. When analyzing

high-order filters, all of the acoustic modes participating in the filtering process contribute

to the spontaneous scattering, as was discussed in Chapter 3. In the case of two identical

acoustic modes with a coupling rate µ, this will yield |χ(2 pole)
N |2 = ([(Ω − Ω0 + µ)2 +

(Γ/2)2]−1 + [(Ω − Ω0 − µ)2 + (Γ/2)2]−1)/2, which exhibits a modified frequency response

as a result of the two resonances, but decays as a single-pole Lorentzian away from the

pass-band (see Section 3.3.3).

While spontaneous Brillouin scattering does occur in the ‘emit’ waveguide as well, it

does not degrade the signal-to-noise of the system. This is because only intensity-modulated

light fields contribute to the coherent transduction of information, while the spontaneous

scattering results only in phase modulation, independent of the driving field in the ‘emit’

waveguide.

Considering typical experimental conditions, the dominant contribution to the microwave-

photonic link noise floor is from spontaneous Brillouin scattering, as can be seen in Fig.

5.4(c), and consistent with experimental demonstrations [187]. Importantly, this noise is

centered around the center frequency and does not contribute excess noise out-of-band. For

the rest of our analysis, we will assume that Brillouin noise is the dominant noise source

in the system, such that it solely determines the noise floor measured at the output of the

link.

5.4 Microwave-photonic link performance

With a description of the output signal and noise from the PPER-based filter in hand, we can

now proceed to analyze the link performance of the system, examining its gain, noise figure,
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Figure 5.4: (a) Calculated RF output power as a function of RF input power using the
parameters from Table 5.2, illustrating the signal (red), the third-order spur (green), and
the link noise-floor (blue). (b) Calculated noise figure of a PPER-based microwave-photonic
link, as a function of optical power in waveguide A and the intensity modulator Vπ, using
the parameters given in Table 5.2. The three cases examined in Table 5.1 are shown here for
reference. (c) Calculated spectral density of the noise sources in a PPER-based microwave-
photonic link, using the device parameters given in Table 5.2. (d) Calculated SFDR3 as a
function of optical power in waveguide A, using Vπ = 3.5 V, and the parameters detailed in
Table 5.2. Adapted from Ref. [155] © 2020 IEEE.
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and dynamic range, as were discussed in Chapter 4. The analysis of these performance

metrics will be important for practical deployment of such filters, and interfacing them

with other components and systems.

5.4.1 Link gain

We start by calculating the link gain, describing the linear relation between the input and

output RF power. First, we take the small-signal limit (Vin � Vπ), and linearize the Bessel

functions in Eq. (5.23) (J1(x) ≈ x/2), leaving us with

PRF
out (Ω) =

1

2
Rout|Hpd|2

[
ηP (B) Γ

2
|χ| πVin

Vπ
GBP

(A)L sin (Ωτ/2)

]2

. (5.33)

Expressing the input signal in terms of power, i.e., PRF
in = V 2

in/(2Rin), where Rin is the

input impedance of the intensity modulator [198], we arrive at the linear link gain

g =
PRF

out

PRF
in

= RinRout|Hpd|2
[
ηP (B) Γ

2
|χ(Ω)| π

Vπ
GBP

(A)L sin (Ωτ/2)

]2

, (5.34)

showing that the link gain improves quadratically with the optical powers, Brillouin gain,

and device length. We can also see that for maximum signal output, we need the time-delay

of the MZI that is used for phase demodulation to satisfy Ω0τ/2 = π(m + 1/2). Together

with the expression for the output noise (Eq. (5.32)), we can look at the signal-to-noise

ratio (SNR) for a given RF input signal

SNR =
PRF

out

PN
=

1

8
PRF

in

(
π

Vπ

)2 Ω0

ω
(B)
0

GB

(
P (A)

)2
L

kBTBRF

|χ(Ω)|2

|χN (Ω)|2
Rin, (5.35)

which can be improved by using a low Vπ modulator, as well as high optical power and long

devices.

5.4.2 Linear dynamic range

The link gain we have derived is valid at the small-signal limit, however, the output power

can deviate from this linear function at higher input powers. To assess the nonlinearity of
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the link, we first calculate the 1 dB compression point, i.e., the RF input power at which

the output power is 1 dB lower than the linear response predicts. Setting the ratio between

Eqs. (5.23) and (5.34) to 1 dB (i.e., 100.1), we can solve numerically to find the input RF

power

P 1dB
in =

0.183

Rin

[
Vπ

Γ |χ(Ω)|GBP (A)L sin (Ωτ/2)

]2

. (5.36)

The linear dynamic range, defined as CDR1dB = gP 1dB
in /PN (see Fig. 5.4(a)), is given by

CDR1dB = 0.226
Ω0

ω
(B)
0

1

kBTBRF

1

Γ2 |χ(Ω)|2GBL sin2 (Ωτ/2)
, (5.37)

where the noise power (PN) is assumed to be Brillouin-noise dominated, (see Eq. (5.31)). In

this calculation, we have assumed that the compression is a result of the intensity modulator

at the link input, consistent with the parameters of recent demonstrations [187]. A similar

expression can be derived for the distortion resulting from the Brillouin process in the case

of very strong nonlinear optical interactions.

5.4.3 Spur-free dynamic range

As we have discussed in Chapter 4, another important measure of the performance of a

microwave system is the third-order intercept point, describing the power at which the

linear signal is equal to the third-order spurious tone [198], illustrated in Fig. 5.4(a). In

the PPER-based system we are analyzing here, the spurious tone is a result of the intensity

modulator not having a perfectly linear response, producing unwanted spurious signals, as

was discussed in Section 4.4.3.

To quantify this distortion, we assume that the input RF signal is oscillating at frequency

Ω/3 and analyze the propagation of the third-order modulation through the device. In this

case, Eq. (5.13) transforms into β
3Ω/3
in = (Γ/2) |χ(Ω)| J3 (πVin/Vπ)GBP

(A)
0 L, where the

Bessel function is of third order, as we are interested in the third harmonic. Substituting

into Eq. (5.23) and expanding the Bessel functions to the first non-vanishing order (J3(x) ≈
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x3/48) we have

P
3Ω/3
out =

1

144

(
PRF

in

)3
R3

inRout|Hpd|2
[
ηP (B) Γ

2
|χ(Ω)|

(
π

Vπ

)3

GBP
(A)L sin (Ωτ/2)

]2

. (5.38)

To find the third-order intercept point, we equate Eqs. (5.34) and (5.38), and solve for the

input RF power, giving the input intercept point (IIP3)

IIP3 = 12
V 2
π

π2Rin
, (5.39)

and plugging back into Eq. (5.34), we have the output intercept point (OIP3)

OIP3 = 12

[
ηP (B) Γ

2
|χ(Ω)|GBP

(A)L sin (Ωτ/2)

]2

Rout|Hpd|2. (5.40)

We can now calculate the spur-free dynamic range, describing the range of RF powers

between the minimum detectable signal up to the appearance of the third-order spur (see

Fig. 5.4(a)), given by SFDR3 = (OIP3/PN)2/3. Using Eqs. (5.40) and (5.31) we have

SFDR3 =

[
3

2

Ω0

ω
(B)
0

GB

(
P (A)

)2
L

kBTBRF

|χ(Ω)|2

|χN (Ω)|2

]2/3

, (5.41)

showing higher dynamic range with higher optical power, longer device length, and higher

Brillouin gain. Interestingly, we see that the spur-free dynamic range does not depend on

the value of the modulator half-wave voltage. This is because both the signal and the third-

order spur are generated at the modulator and a different value of Vπ will affect both the

signal and the spur in the same way, such that overall, their intercept point is unaffected

(see Eq. (5.40)).

5.4.4 Noise figure

Finally, we analyze the noise figure of the link, quantifying the noise added by the microwave-

photonic system, by calculating the ratio of the input and output signal-to-noise ratios

(SNR), F = SNRin/SNRout. Using the output SNR from Eq. (5.35), and assuming thermal
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noise at the RF input port (kBTBRF), we have

F =
PRF

in / (kBTBRF)

gPRF
in /PN

=
8

Rin

(
Vπ
π

)2
(
ω

(B)
0

Ω0

)
1

GB

(
P (A)

)2
L

|χN (Ω)|2

|χ(Ω)|2
. (5.42)

Examining a two-pole filter using realistic system parameters (see Table 5.2), we calculate

a noise figure of 48 dB and a spur-free dynamic range of 100 dB Hz2/3. The system

parameters chosen here are similar to those used in recent experiments [186, 187], and

the theoretical analysis is consistent with experimental results. For example, using the

experimental parameters described in Ref. [187] with no further calibration, we predict the

measured gain, noise-figure, and spur-free dynamic range to within a few dB.

5.4.5 Potential performance of PPER-based filtering

As we seek higher performance systems of this type, it is instructive to explore a broader

parameter space to inform future generations of PPER device design and RF links. Analyz-

ing the design space of the system, illustrated in Figs. 5.4(b,d), reveals that we can further

improve the performance of the RF link by using a low half-wave voltage (Vπ) modulator

and higher optical powers. Lower Vπ corresponds to higher efficiency in the optical intensity

modulation for the same input RF voltage [265]. This results in a stronger acoustic field

transducing the RF signal, while not adding noise to the link. We demonstrate the link

parameter space by comparing three scenarios: recently demonstrated systems (denoted

Case I), a PPER-based link employing a low half-wave voltage modulator (Case II), and

a link utilizing a low-Vπ modulator, as well as higher optical power (Case III), presented

in Table 5.1 and shown in Fig. 5.4(b). For example, using an optical power of 500 mW

in waveguide A and a modulator with Vπ = 0.2 V will result in a noise figure of 9 dB,

and a dynamic range of 110 dB Hz2/3. Additional improvement to the dynamic range can

be achieved by using linearized modulators, as modulator-induced distortion is the limiting

factor for linearity in this microwave link [201,266]. As was discussed in Chapter 4, a simple

microwave-photonic link yields a noise figure on the order of 20 dB (see Section 4.4), and

when considering a microwave-photonic link implementing narrowband filtering, the noise
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figure is typically even higher [144]. The possibility of achieving a noise figure under 10 dB

with a PPER-based filter shows its potential for high-performance narrow-band filtering.

5.4.6 Alternative demodulation scheme using optical filtering

In our analysis up to this point, we have assumed an MZI-based phase demodulation scheme

to retrieve the filtered RF signal at the PPER output, however, alternative demodulation

schemes are possible. Here, we describe the performance of a PPER-based microwave-

photonic link implementing a different demodulation scheme, using optical filtering, such

as was demonstrated in Ref. [187]. In this demodulation scheme, the first sideband of the

phase-modulated PPER output is suppressed by using an optical filter, resulting in the

conversion of phase modulation into an intensity signal that can be detected using a single

photodetector, as illustrated in Fig. 5.3(b). The output field is now given by E
(B)
out (t) =√

~ω(B)
0 v

∑
n 6=−1 a

(B)
n e

−i
(
ω

(B)
0 +nΩ

)
t
, which results in a photocurrent I = η|E(B)

out (t)|2 when

using a photodiode with responsivity η. Plugging in Eq. (5.12), keeping terms oscillating

around frequency Ω, yields

IΩ = 2ηP (B) cos (Ωt+ π/2− φ) [J0 (βin) J1 (βin)− J1 (βin) J2 (βin)] , (5.43)

and the average RF output power (PRF
out = 〈I2

Ω〉Rout|Hpd|2) is now

PRF
out (Ω) = 2Rout|Hpd|2

(
ηP (B) [J0 (βin) J1 (βin)− J1 (βin) J2 (βin)]

)2
. (5.44)

In the small-signal linear regime, we expand the Bessel functions to first order, leaving us

with

PRF
out (Ω) =

1

8

[
ηP (B) Γ

2
|χ| πVin

Vπ
GBP

(A)L

]2

Rout|Hpd|2, (5.45)

showing a four-fold reduction in power when compared to the interferometer-based demod-

ulation analyzed earlier (compare to Eq. (5.33)). This also implies that the RF link gain

g = PRF
out/P

RF
in will be four times lower (−6 dB). The reduction in optical power should not

surprise us, as in the optical filtering process we are discarding some of the signal power.
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Table 5.1: Calculated microwave-photonic link properties of a two-pole PPER-based filter,
assuming phase demodulation using an MZI and using the parameters from Table 5.2.
Adapted from Ref. [155] © 2020 IEEE.

Parameter Case I Case II Case III Description

G (dB) 7.8 32.7 46.7 RF link gain (Pout/Pin)

OIP3 (dBm) 32.6 32.6 46.5 Output intercept point

SFDR3 (dB Hz2/3) 100.4 100.4 109.9 Spur-free dyn. range (OIP3/PN)2/3

P 1dB
out (dBm) 9 9 9 1 dB compression point

CDR1dB (dB Hz) 127 127 127 Linear dyn. range
(
P 1dB

out /PN

)
NF (dB) 48.2 23.3 9.3 Noise figure (SNRin/SNRout)

SNR (dB Hz) 135.8 160.7 174.6 Signal to noise ratio (Pout/PN)

Case I: Vπ = 3.5 V, P (A) = 100 mW, Case II: Vπ = 0.2 V, P (A) = 100 mW, Case III: Vπ = 0.2 V,
P (A) = 500 mW.

Table 5.2: Parameters used in the microwave link analysis. Adapted from Ref. [155] ©
2020 IEEE.

Parameter Value Description

P (A) (mW) 100 Optical power in waveguide A

P (B) (mW) 100 Optical power in waveguide B

λ(B) (nm) 1550 Optical wavelength

Ω0 (2π GHz) 5 Acoustic resonant frequency

Q 1000 Acoustic Q-factor

µ (2π MHz) 2 Acoustic coupling between phonons1

L (mm) 30 Active length

GB (W−1m−1) 1000 Brillouin gain

PRF
in (dBm) 10 Input RF power

Vπ (V) 3.5 Intensity modulator half-wave voltage

η (A/W) 0.75 Photodiode responsivity

Rin (Ω) 50 Input impedance

Rout (Ω) 50 Output impedance

Hpd 0.5 Photodiode response

τ (ps) 100 Interferometer time delay for demodulation

BRF (Hz) 1 RF bandwidth

T (K) 290 Temperature

γ (2π kHz) 5 Laser linewidth
1 Applies only to multi-pole filters.
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Next, we analyze the noise floor, taking into account the optical-filtering demodulation

scheme. We can describe the spontaneous-Brillouin scattered light using Eq. (5.26), which

now has only one sideband due to the optical filtering

Eout(t) =
√

~ω0v
(
a0e
−iω0t + a1e

−i(ω0+Ω0)t
)
. (5.46)

Calculating the photocurrent generated by this spontaneous scattering IN(t) = η |Eout(t)|2

gives us

IN(t) = η~ω0v
[
|a0|2 + |a1|2 + 2 Re

(
a†0a1 cos (Ω0t)

)]
, (5.47)

and keeping terms oscillating around Ω0, we can derive the spectral density using Eq. (5.28)

SRF
N (Ω) = η2 ω0

Ω0
GBP

2LkBTRout|Hpd|2
[

(Γ/2)2

(Γ/2)2 + (Ω− Ω0)2
+

(Γ/2)2

(Γ/2)2 + (Ω + Ω0)2

]
.

(5.48)

Integrating a narrow bandwidth BRF around frequency Ω, the single-sideband power spec-

tral density is given by

PN(Ω) = 2η2 ω0

Ω0
GBP

2LkBTBRFRout|Hpd|2
(

Γ

2

)2

|χN (Ω)|2 , (5.49)

which is four times smaller than the balanced detection result shown earlier in Eq. (5.31).

This is consistent with the calculation of the output signal power (Eq. (5.45)), which also

shows a four-fold reduction, resulting in the same signal-to-noise ratio, regardless of the

demodulation scheme.

We also note that the filtering of the optical sideband turns the phase fluctuations into

intensity, resulting in the laser phase noise being converted into intensity noise, with a RIN

given by

RINphase =
2

π

∫ B/2

−B/2
dΩ′

(
γ

(γ/2)2 + (Ω′)2

)(
γ

(γ/2)2 + (Ω′ − Ω)2

)
, (5.50)

where B is the bandwidth of the optical filter used to reject one of the sidebands, and γ

is the laser linewidth resulting from its phase fluctuations. As with the MZI demodulation
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case, using typical values, the thermal phonon scattering contribution is still the dominant

noise source [187].

Next, we quantify the usable dynamic range of the microwave-photonic filter with the

alternative demodulation scheme. We start by calculating the 1 dB compression point.

Setting the ratio between Eqs. (5.44) and (5.45) to 1 dB, and solving for the input power,

we have

P 1dB
in =

0.245

Rin

(
Vπ

Γ |χ|GBP (A)L

)2

, (5.51)

showing the same scaling with system parameters as we had with the MZI-based demod-

ulation scheme (see Eq. 5.36). We calculate the third-order intercept point [198], by

assuming the input RF signal is at frequency Ω0/3 and analyzing the propagation of

the third-order modulation through the microwave-photonic link. In this case we have

β
3Ω/3
in = (Γ/2)|χ|J3(πVin/Vπ)GBP

(A)
0 L, and plugging into Eq. (5.44), expanding the Bessel

functions to the first non-vanishing orders, we have

P
3Ω/3
out =

1

576
R3

inRout|Hpd|2
(
PRF

in

)3 (
ηP (B) Γ

2
|χ|
(
π

Vπ

)3

GBP
(A)L

)2
. (5.52)

To find the third-order intercept point, we equate Eqs. (5.45) and (5.52), and solve for the

input RF power, giving the input intercept point (IIP3)

IIP3 = 12
V 2
π

π2Rin
. (5.53)

Substituting into Eq. (5.45), we find the output intercept point (OIP3)

OIP3 = 3

[
ηP (B) Γ

2
|χ|GBP

(A)L

]2

Rout|Hpd|2, (5.54)

showing a four-fold reduction when comparing to the MZI-based demodulation scheme (see

Eq. (5.40)).

We can see that when using the alternative phase demodulation scheme, the signal and

the noise both change by the same factor, such that the noise figure and spur-free dynamic

range do not change. However, different demodulation schemes may have different signal



CHAPTER 5 123

compression, yielding a difference in the linear dynamic range.

5.5 Enhanced performance at cryogenic temperatures

Up to this point, we have analyzed the performance of a PPER-based microwave-photonic

filter at room temperature, where thermally-occupied phonons dominate the link noise floor.

In this section we will consider operating such microwave links at lower temperatures, where

the phonon occupation is reduced, resulting in lower spontaneous Brillouin scattering noise.

Additionally, we expect the phonon lifetime (τac) in the device to increase at lower tem-

peratures, as internal sources of phonon dissipation are suppressed [168, 267, 268]. This

corresponds to a higher phonon quality factor (Q ∝ τac) and results in a larger Brillouin

gain, which scales linearly with the Q-factor (GB ∝ 1/Γ ∝ Q). Additional effects of low

temperature could be reduced two-photon absorption, enabling higher optical power han-

dling of the devices, however, these are not considered in the following analysis. Operating

optomechanical devices at cryogenic temperatures has been frequently performed over the

past decade [268–270], and could be adapted to the types of Brillouin-active devices dis-

cussed here.

Throughout this section, the calculations use the parameters presented in Table 5.4,

all of which are similar to recent experimental demonstrations [64, 187], and we consider

a two-pole PPER-based filter and an MZI balanced-detection phase demodulation scheme.
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Figure 5.5: (a) Different scenarios of the acoustic Q-factor as a function of temperature.
(b) Inverse Q-factor, proportional to the phonon dissipation rate (Q−1 ∝ Γ).
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To consider the uncertainty of the acoustic mode lifetime as a function of temperature, we

analyze four different cases for the dependence of the acoustic Q-factor on temperature, as

shown in Fig. 5.5. This includes the case where the acoustic mode does not change with

temperature and three cases where we assume the phonon Q-factor grows from Q = 103 at

room temperature (T = 290 K) to Q = 104 in the limit T → 0, each with different scaling.

The first observation we note is the change in the two-pole filter lineshape at different

temperatures. Since the phonon dissipation rate determines the pass-band width, lower

temperatures will result in sharper filters, as seen in Fig. 5.6. In our calculations, we are

scaling the acoustic coupling rate µ as the temperature is changed, resulting in a constant

peak in all lineshapes, and the change is seen only in the bandwidth and sharpness of the

filter. We note that the case of a constant Q-factor (not depending on temperature) can be

used to compare the operation of filters with the same bandwidth at different temperatures,

which could be achieved through device geometry. Practically, this implies that the devices

are designed with the target operating temperature in mind and fabricated accordingly.
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Figure 5.6: Filter lineshape as a function of temperature.
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5.5.1 Noise sources

Next, we examine the dependence of the different noise sources on the device temperature.

Restating Eq. (5.24), the noise sources we consider in our analysis are given by

Ntot = Nth +Nshot +Nphase +NB. (5.55)

The first term accounts for thermal microwave noise (‘Johnson–Nyquist’ noise), at the link

input and output, given by

Nth = ~Ω

[
1

exp (~Ω/kBT )− 1
+

1

2

] (
1 + g

)
, (5.56)

where g is the link gain. In the high temperature limit (kBT � ~Ω) the expression reduces

to Nth = kBT (1 + g(Ω)), which we have used earlier in the room-temperature analysis. It

is important to note that the temperature T in Eq. (5.56) refers to the environment of the

input and output of the link (intensity modulator and detector), which we will assume is at

room temperature regardless of the temperature of the device. The second and third terms

in Eq. (5.55) take into account shot noise and laser phase noise, which do not depend on

the device temperature and were given in Eqs. (5.24) and (5.25). The last contribution is

that of thermal Brillouin noise, a consequence of the occupation of the acoustic modes at

thermal equilibrium, given by

NB = 8
(
ηP (B)

)2
Rout|Hpd|2

[
~ω0GBLnth sin2 (Ωτ/2)

(
Γ

2

)2

|χN (Ω)|2
]
, (5.57)

where nth = [(exp (~Ω/kBTB)− 1)−1] is the mean phonon occupation at the device temper-

ature TB. The frequency response reduces to |χN |2 = 2/Γ2 at the filter center. We note that

Eq. (5.57) is equivalent to the earlier Eq. (5.31), without assuming the high temperature

limit.

Fig. 5.7 shows the power spectral density (PSD) of the different noise sources at different

device temperatures, assuming different scalings of the acoustic Q-factor with temperature.



CHAPTER 5 126

a

b

c

d

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

4.9 5 5.1

-160

-140

-120

Figure 5.7: Power spectral density for different device temperatures.
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Figure 5.8: Peak power spectral density at the center of the passband (Ω = Ω0) as a function
of device temperature.

In Fig. 5.8, the PSD at the center of the filter pass-band (Ω = Ω0) is plotted as a function

of temperature. We can see the reduction in Brillouin noise at lower temperatures, as there

is a smaller population of thermal phonons. Interestingly, the thermal noise increases as

the temperature drops, as a result of the higher link gain due to the longer lifetime of the

acoustic modes.

5.5.2 RF-link performance

We turn to estimate the potential microwave-link performance metrics at low tempera-

tures. We can identify a number of possible advantages of low-temperature operation when

considering the potential performance of the microwave-photonic link.

Starting with the link gain, we use Eq. (5.34), however, now the phonon dissipation rate

Γ, the Brillouin gain GB, and the frequency response χ(Ω) are temperature dependent. In

this case, lower temperature will result in longer phonon lifetimes, yielding higher Brillouin
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Figure 5.9: Calculated microwave-photonic link performance as a function of temperature.

Table 5.3: Calculated microwave link performance at four different device temperatures,
assuming Q ∝ T 4

B.

TB (K) 290 260 77 4 Temperature

G (dB) 0.4 3.7 20 20.4 RF link gain

NF (dB) 50.6 48.4 35 22.1 Noise figure1

SFDR3

(
dB Hz2/3

)
97.9 99.3 108.3 116.9 Spur-free dynamic range

CDR1dB (dB Hz) 138.6 137.4 134.6 147.1 Linear dynamic range
1 Nin is assumed to be thermal noise at room temperature (T = 290 K), such that Nin = kBT =
−174 dBm/Hz.
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gain and a higher RF link gain, as shown in Fig. 5.9(a). Next, we calculate the noise figure

as a function of temperature. We consider the input noise spectral density to be room

temperature thermal noise Nin = kBT , and in the linear gain regime, we can write the noise

figure as F = Ntot/(gkBT ), where Ntot was given in Eq. (5.55). As could be expected,

the reduction in the Brillouin noise due to the lower temperature results in a lower noise

figure, as seen in Fig. 5.9(b). The spur-free dynamic range is calculated by evaluating the

third-order intercept point OIP3 from Eq. (5.40), and using SFDR3 = (OIP3/PN )2/3. As

seen in Fig. 5.9(c), we expect a sharp increase in the dynamic range as the temperature

drops, a consequence of the lower noise floor. Finally, we calculate the 1 dB compression-

free dynamic range CDR1dB = gPin1dB
/PN , where Pin1dB

is given by Eq. (5.36), as shown in

Fig. 5.9(d). We can see that the linear dynamic range is still much larger than the spur-free

dynamic range, and will not limit system operation within its distortion-free range. We

summarize the RF link properties at four different temperatures in Table 5.3, for the case

of Q−1 ∝ T 4
B, demonstrating the enhanced performance as the temperature is reduced.

Table 5.4: Parameters used in the low temperature analysis.

Parameter Value Description

λ(B) (nm) 1550 Optical wavelength (2πc/ω(B))

Ω0 (2π GHz) 5 Phonon frequency

Q0 1000 Acoustic Q-factor at room temperature

µ Ω0/(2Q) Acoustic coupling rate

P (A) (mW) 100 Optical power in the ‘emit’ waveguide

P (B) (mW) 100 Optical power on the ‘receive’ detector

GB (W−1m−1) 1000 Brillouin gain at room temperature

L (mm) 10 Active-Brillouin interaction length

Vπ (V) 3 Half-wave modulation voltage

η (A/W) 0.8 Photodioide responsivity

Rout (Ω) 50 Output impedance

Hpd 0.5 Photodiode response

Rin (Ω) 50 Input impedance

τ (ps) 100 Interferometer time delay for demodulation

γ (2π kHz) 1 Laser linewidth
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5.6 Conclusion

In this chapter, we have analyzed a microwave-photonic link that utilizes a Brillouin-active

PPER device, and have shown how this system can be used to implement narrowband

bandpass filtering. In our analysis, we have described the output RF signal in terms of

the optical, microwave, and acoustic parameters of the system. The PPER device in the

heart of this microwave-photonic link provides the acousto-optic interaction that enables

the RF-link to achieve narrowband filtering and directly affects link performance. For

example, designing PPER devices with a lower acoustic dissipation rate can yield sub-MHz

filter lineshapes, and further improvements to the link performance can be achieved through

mode-engineering of the optical waveguides to achieve stronger Brillouin gain. Additionally,

increasing the interaction length, by designing longer devices or utilizing resonant structures

[66], will improve filter performance. The separation of optical tones to spatially separated

waveguides reduces the effects of optical nonlinearity such as four-wave mixing, which can

be detrimental to filter performance. This also reduces the effects of spurious optical tones

such as from unwanted reflections [247], degrading filter response, and avoids the use of

circulators which may be challenging to integrate on-chip.

The ability to design a multi-pole frequency response using the PPER scheme is unique

when comparing to other Brillouin-based filtering methods. Additionally, an all-optical

filter with a similar frequency response would be very challenging to realize. For example,

an equivalent filter using two coupled ring-resonators would require each resonator to have a

Q-factor on the order of ∼108, with precise control over the coupling rates between the rings

and to the bus waveguides [192]. Moreover, the lasers used in such a filtering scheme would

need to be frequency-stabilized relative to the resonances used for the filtering operation. In

contrast, the PPER scheme does not rely on optical resonances, avoiding these limitations,

with the benefit of being optically transparent over large bandwidths.

Analyzing the noise sources of a PPER-based RF link, we have seen that the dominant

noise is the result of thermally-excited phonons when operating at room temperature, and we

have shown how Brillouin noise can be reduced by decreasing the operating temperature of
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the device. Since the dynamic range of this system is limited by distortions originating from

the electro-optic modulator, significant enhancement of the spur-free dynamic range can be

possible with the availability of linearized intensity modulators [201,266], possibly yielding

SFDR3 >135 dB. An important parameter for a low noise figure is a low half-wave voltage of

the intensity modulator. Using newly developed low Vπ modulators [53,258] in conjunction

with higher optical powers, a noise figure of <10 dB becomes feasible. Alternatively, through

the use of an RF low-noise amplifier (LNA) to amplify the microwave signals entering the

intensity modulator, this PPER filter system can yield an overall lower noise figure. The

use of an LNA at the input of a PPER-based filter is further discussed and demonstrated

in Chapter 7.

This new type of microwave-photonic link offers a variety of strategies for trimming

and tuning the bandpass frequency and can be used in multiple frequency multiplexing

schemes. The resonant frequency of the PPER can be tuned through the geometry of the

device, as it sets the boundary conditions for the acoustic modes taking part in the signal

transduction [44]. Furthermore, by implementing different modulation schemes at the filter

input, the filter bandpass frequency can be tuned optically, as illustrated in Fig. 5.10(a).

In this scenario, the RF information is modulated on an optical carrier (optical frequency

ω
(A)
0 ) using a phase modulator, and a separate optical tone at optical frequency ωLO is used

as an optical local oscillator (LO) to drive the acoustic field and transduce the information

onto the light in the ‘receive’ waveguide. As there are no optical resonances in the device,

the optical tuning of the RF filter pass-band can be varied over a large spectral range [240],

while maintaining a few MHz pass-band. Furthermore, the ‘emit’ and ‘receive’ waveguides

can operate at different wavelengths, effectively frequency shifting the optical carrier when

information is transduced in the device. The possibilities of frequency-response trimming

and pass-band tunability using the PPER scheme will be discussed further in Chapters 6

and 7.

Another intriguing property of the PPER RF-filtering scheme is the ability to cascade

multiple filters in series without degrading the RF signal modulated on the optical field.

The phonon field generated in the device phase-modulates the ‘emit’ optical field as it prop-
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Figure 5.10: (a) An RF signal is modulated on an optical carrier (blue) and combined with a
second optical tone (purple). By tuning the optical wavelength, the filter passband is shifted,
as the acoustic resonance (green) overlaps with different spectral bands of the modulated
RF information. (b) Cascading multiple filters in series enables the filtering of different
frequency bands simultaneously, without the need to split the signal, and with no signal
degradation. (c) Cascading multiple PPER devices with different resonant frequencies can
be used as an on-chip sensor. A swept RF source allows spatial resolution of the different
segments, enabling distributed sensing on-chip. Adapted from Ref. [155].
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agates in waveguide A, but does not affect the intensity modulation that encodes the input

RF signal, as was discussed in Chapter 3. Hence, the field coming out of waveguide A has an

identical intensity modulation profile as the input field and can drive another PPER filter

cascaded in the system exactly in the same manner. This is in contrast with a conventional

RF filter array in which out-of-band spectral components are attenuated, leading to the

need for splitting and amplifying the RF signal, resulting in lower signal power, degrading

the SNR of the link, and adding to the complexity of the system. The ability to cascade

multiple PPER filters in series can be of great practical use in applications such as spec-

tral awareness and channelization [271,272], where multiple bands of the RF spectrum are

monitored simultaneously, as well as filter banks used frequently in communication systems.

The scheme illustrated in Fig. 5.10(b) could enable us to filter out multiple spectral bands

simultaneously using a single intensity modulator at the link input, and a separate ‘receive’

signal-path for each spectral channel. For example, by using millimeter-scale PPER seg-

ments, each filtering a 5 MHz spectral region, 1000 filters can be cascaded, with an overall

length of a few centimeters, spanning a 5 GHz spectral range on a single chip. Addition-

ally, since the dominant noise source is from spontaneous Brillouin scattering, it is centered

around the center frequency of each filter and does not add out-of-band noise.

An alternative cascading scheme is illustrated in Fig. 5.10(c). In this scenario, a sin-

gle optical tone propagates through the ‘receive’ waveguide in multiple cascaded PPER

segments, while an RF signal generator performs a frequency sweep through the range of

acoustic frequencies. By designing the geometry of each PPER segment to have a different

resonant frequency, the swept RF source at the input will result in multiple peaks mea-

sured on an RF spectrum analyzer, corresponding to the different segments. The high-Q

acoustic resonances, combined with the high SNR of the PPER scheme, make this an ideal

candidate for on-chip sensing applications. For example, the Brillouin frequency is sensitive

to nanometer-scale geometrical perturbations [64, 65], enabling the design of distributed

sensors with micrometer spatial resolution, and a sensitivity to atomic-scale perturbations,

proportional to the inverse of the Q-factor [273]. Brillouin scattering is widely used in

fiber-optic sensors, as external perturbations such as strain and temperature result in a



CHAPTER 5 134

measurable change of the acoustic resonance [87, 274]. More recently, chip-scale devices

implementing Brillouin scattering have been demonstrated for sensing [239]. Furthermore,

using forward-Brillouin scattering as the optomechanical coupling process enables inter-

rogation of the device surface, as the transverse acoustic waves are set by the boundary

conditions of the acoustic waveguide [94]. In chip-integrated devices, this property could be

utilized by activating the device surfaces to bind to different chemical compounds [275,276].

While recent demonstrations of PPER devices were implemented in suspended silicon

waveguides, the concept can be realized in other systems where distinct optical fields are

coupled to mutual acoustic resonances. Potential systems include multi-core fiber [188],

as well as systems where optical fields are guided in different spatial modes [139], or are

separated in wavelength [44]. The modularity of the PPER system and the large design

space enable numerous applications, ranging from high-performance microwave-photonic

filters to high-resolution channelizers and distributed sensors.
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Multi-pole photonic-phononic

emit-receive devices in silicon

6.1 Introduction

A promising strategy to utilize Brillouin scattering for microwave-filtering operations is us-

ing a photonic-phononic emitter-receiver (PPER), where information is transduced between

the optical and acoustic domains, resulting in a narrowband frequency response [186, 187].

As we have shown in the previous chapter, this can be accomplished by encoding infor-

mation on an optical carrier that drives spatially-extended coherent acoustic waves, which

in turn induce a narrowband phase modulation onto light propagating in a separate op-

tical waveguide. In contrast to the Lorentzian lineshape typical of Brillouin interactions,

the PPER scheme enables us to produce a multi-pole filter response by utilizing multiple

coherent acoustic modes in the transduction process [186].

Experimentally, PPER multi-pole response was demonstrated with devices fabricated

from silicon and silicon nitride materials using a MEMS fabrication process that involved

planarization through chemical-mechanical polishing (CMP) [186]. While these initial de-

vice studies demonstrated the feasibility of high-performance multi-pole response, dimen-

sional nonuniformities produced during CMP-based planarization made it challenging to

135
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consistently reproduce such multi-pole filters. Moreover, the technological impact of PPER-

based filtering technology hinges on the nonlinear and noise characteristics of such devices

within a microwave-photonic link, which were not explored in the earlier study. Recently, a

PPER-based microwave-photonic link was demonstrated using a single-pole silicon device,

showing the feasibility of such filtering schemes [64]. However, the single-pole nature of the

filter yielded limited out-of-band suppression. Because this rudimentary single-pole device

lacks an acoustic stop-band, numerous acoustic resonances supported in this system lead to

high transmission of frequencies outside of the pass-band, degrading the filter performance.

As we develop these nascent technologies for real-world applications, we seek microwave-

photonic filters that have frequency-tunable operation, excellent filter lineshape and link

performance, as well as robust foundry compatible fabrication [196].

In this chapter, we will expand on the design considerations of a practical device, utilizing

a standard silicon-on-insulator (SOI) platform and standard CMOS-compatible fabrication

steps. The layer structure of the SOI chips we will use is comprised of a 215 nm silicon

layer on a 3 µm buried oxide (silica) and a silicon handle (∼0.5 mm) under the oxide (see

Fig. 6.1(a)). We will present the design of a device supporting two optical modes and two

acoustic modes, with a strong forward Brillouin interaction between each pair of optical

and acoustic modes. By utilizing a phononic crystal structure we introduce controlled

coupling between the acoustic modes, achieving a two-pole frequency response and a wide

stop-band of several GHz, suppressing unwanted acoustic modes. Furthermore, by tailoring

the geometry of the device, we demonstrate how we can control the spectral features of the

frequency response, and study the effects of fabrication imperfections.

The standard silicon-on-insulator (SOI) platform enables fabrication using standard

CMOS lithography steps, and we will present results from devices fabricated using electron-

beam lithography, as well as from a silicon-photonics photolithography facility. The use of

well-established fabrication methods and standard materials results in high fabrication yield,

reproducible results, and robust device performance over time.
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6.2 Brillouin-active waveguide design

We start by designing a Brillouin-active waveguide (following Ref. [64]) which consists of

a 215 nm silicon layer in which an optically guiding rib is defined by partially etching the

silicon layer to a thickness of 130 nm. We use the fundamental TE-like optical mode guided

in this waveguide, and the electric field is well localized in the rib region as shown in Fig.

6.1(c). In order to achieve acoustic guiding in the silicon device layer, the buried oxide is

removed such that the waveguide is suspended, as shown in Figs. 6.1(a,b). This step is

important, as the silica (SiO2) layer has a slower sound velocity compared to silicon (Si),

and acoustic energy can easily escape the waveguide if it is not removed.

To achieve a strong forward Brillouin interaction, the optical and acoustic fields must

overlap within the waveguide with the correct phase-matching conditions. As we analyzed

in Chapter 2, phase matching of a forward Brillouin process requires an acoustic mode with

a cut-off frequency, hence the acoustic waveguide must have transverse confinement. This

can be achieved by etching slots parallel to the waveguide [64], as shown in Fig. 6.1(b),
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Figure 6.1: (a) Illustration of the silicon-on-insulator device layer structure with a rib
waveguide etched into the device layer. (b) By etching slots parallel to the rib waveguide
and removing the silica under the waveguide, a low-loss acoustic waveguide is defined. (c)
The x component of the fundamental electric field guided by the rib structure. (d) The
x component of the displacement profile of the acoustic eigenmode used in the forward
Brillouin process. (e) The corresponding Sxx component of the strain profile.
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yielding high-Q acoustic modes. Additionally, the symmetry of the spatial mode profiles

of the acoustic and optical modes must be engineered to yield a large overlap integral. In

silicon, the largest photo-elastic tensor component is p11, and the dominant contribution

to the coupling rate (see Section 2.3.1) is gpe ∝
∫
dxdy |Dx|2p11∂xux, where Dx is the x

component of the electric displacement field, and ux is the x component of the mechanical

displacement. We can see that the coupling occurs between the electric field polarized

along the x axis (as satisfied by the TE-like mode) and the strain component along the x

axis (Sxx = ∂xux). As the function |Dx|2 is symmetric in space with respect to the x axis

(assuming the origin at the center of the waveguide), this requires the acoustic mode to have

a symmetric strain profile and an anti-symmetric displacement profile. The displacement

profile of forward Brillouin-active phonon mode is shown in Fig. 6.1(d), and the strain is

shown in Fig. 6.1(e), where the desired symmetric function can be seen.

When designing a two-pole PPER device, we want to acoustically couple two of these

waveguides, as discussed in Chapter 3. Since the slots provide a ‘hard boundary’, i.e., they

completely stop the propagation of phonons, this does not allow their coupling to other

devices. Hence, a different form of acoustic lateral confinement is required for multi-pole

devices. We achieve this by using a phononic crystal structure, in which the acoustic energy

is reflected (preserving the high-Q acoustic mode) while at the same time, it penetrates the

crystal region, such that it can interact with other acoustic modes.

6.3 Acoustic mode engineering

We design a phononic crystal comprised of a cubic lattice of air holes in the silicon layer to

achieve an acoustic stop-band that will reflect the acoustic mode taking part in the Brillouin

process. The phononic crystal can be parametrized by the unit-cell pitch a and hole diameter

d, which determine the acoustic dispersion of the phononic crystal. We analyze the acoustic

properties of such structures using finite-element-method (FEM) simulations, shown in Fig.

6.2. First, we simulate the propagation of acoustic modes with displacement along the x

axis through a phononic crystal region, demonstrating low acoustic transmission over a 2.5
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GHz range, as seen in Fig. 6.2(a). In this analysis, we drive x-displacement modes which are

similar to the acoustic modes coupled to in the forward Brillouin process (see Fig. 6.1(d)).

Interestingly, once a ridge structure is added, as seen in Fig. 6.2(b), acoustic propagation

is possible within this stop-band. This is because the out-of-plane ridge structure couples

modes with displacement in the x and y directions.

Next, we simulate a single unit cell of the phononic crystal, and calculate the acoustic

band structure for wavevectors along the kx axis. Fig. 6.2(c) shows the band structure,

setting boundary conditions such that there is no out-of-plane displacement. We can identify

the stop-band from panel (a), noticing a band that does not participate in the propagation

of x-displacement modes (denoted (iii)). When we remove the out-of-plane constraint and

simulate the full band structure, as seen in Fig. 6.2(d), we can identify the modes responsible

for the transmission window from panel (b). Examining the displacement components of

the acoustic modes from different bands, as shown in Figs. 6.2(e,f), we see that most bands

have a dominant displacement axis. While the structure does not have a complete acoustic

bandgap, within the stop-bands there are modes with mostly y and z displacement, which

do not participate in the forward Brillouin interaction. For example, the mode denoted (iii)

in Figs. 6.2(c,e) has displacement primarily along the z axis, which is not driven through

the forward Brillouin process [186].

We note that in measurements performed on such structures, we find a deviation from

the frequencies obtained in the simulation, on the order of ∼10%. This could be a result of

fabrication imperfections, the difference in geometry between the devices and simulation,

as well as the effects of built-in stress in the suspended silicon layer [277,278].

Utilizing this phononic crystal structure, we can now design a ‘super-structure’ com-

prised of two ridge waveguides, as shown in Fig. 6.3, where the acoustic modes of the two

waveguides are coupled through the phononic crystal region. The optical rib waveguides are

well separated by the central phononic crystal region, such that the optical modes do not in-

teract, as seen in Fig. 6.4(a). The lateral width of the acoustic waveguides (W ) is chosen to

produce phonon modes with an acoustic frequency within the phononic crystal stop-band,

such that the acoustic modes are confined by the phononic crystal regions on either side of
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Figure 6.2: (a) Simulated acoustic transmission of an acoustic wave with x displacement
through twelve rows of a phononic crystal, showing a 2.5 GHz stop-band. The cubic
phononic crystal in the simulation has a pitch of a = 650 nm and a hole diameter of
d = 500 nm. (b) Acoustic transmission after adding a ridge structure results in transmis-
sion within the stop-band. (c) Simulated 2D band structure of the phononic crystal, along
the Γ–X line of the Brillouin zone. The structure is constrained to have no displacement out
of the x–z plane. The stop-band region from panel (a) is shown for reference. (d) Acoustic
band structure of the phononic crystal, without constraints. The stop-bands from panel (b)
are shown for reference. (e) Simulated displacement of a unit cell in the cubic lattice, corre-
sponding to the four points marked in panels (c) and (d). (f) The acoustic band structure
from panel (d), showing the relative mean square displacement of the acoustic modes along
the different axes, |ui|2 =

∫
dx3|ui|2/(Σi

∫
dx3|ui|2), i = {x, y, z}. Adapted from Ref. [156].
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the device. Fig. 6.4(f) presents the measured frequency response of such a device, showing

an acoustic resonance at 3.90 GHz within a ∼1.7 GHz acoustic stop-band. In Chapter 3 we

have shown how the two coupled acoustic modes utilized in a second-order PPER device

can be described as phononic ‘super-modes’ with symmetric and anti-symmetric profiles.

In this acoustic structure, we can see these super-modes in the simulation results presented

in Figs. 6.4(b–e). We can also see that the acoustic modes have the required symmetries

for strong forward Brillouin interactions.

6.4 Multi-pole frequency response

Using two coupled acoustic modes results in second-order frequency response due to their

coherent interaction, as was derived in Chapter 3. This can be directly seen from the two

poles in the frequency response (see Section 3.3.1), given by

∣∣∣χ(2 pole)(Ω)
∣∣∣2 ∝ µ2[

(Γ/2)2 + (Ω− Ω0 + µ)2
] [

(Γ/2)2 + (Ω− Ω0 − µ)2
] , (6.1)

a

d

Si

SiO
2

Si

b

c
10 μm

PnCPnCPnC

85 nm130 nm

Figure 6.3: (a) Cross-section of a two-pole PPER device, consisting of two rib waveguides
and phononic crystal (PnC) regions. (b) Illustration of the device, showing the optical
modes in the rib waveguides (orange), and the acoustic modes (green) confined between the
phononic crystal regions. (c) Artistic illustration of the device, showing the under etched
region under the Brillouin-active waveguides. (d) Micrograph of a fabricated device, with
enhanced colors to show the rib optical waveguides (green), and the phononic crystal regions.
Adapted from Refs. [154] and [156].
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Figure 6.4: (a) FEM simulation of the x component of the electric fields in a two-pole
PPER device. The shaded areas represent the phononic crystal regions. (b) Simulation of
the x component of the displacement of the anti-symmetric acoustic super-mode, which can
be interpreted as a linear combination of the two spatial acoustic modes. (c) Simulation of
the x component of the displacement of the symmetric acoustic super-mode. (d) Simulation
of the Sxx component of the strain tensor of the anti-symmetric acoustic super-mode. (e)
Simulation of the Sxx component of the strain tensor of the symmetric acoustic super-mode.
(f) Measured frequency response of a two-pole PPER device, showing the acoustic stop-
band (shaded region) and an acoustic resonance at 3.9 GHz. Adapted from Refs. [154]
and [156].
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where µ is the coupling rate between the two acoustic modes, Γ the acoustic dissipation

rate, and Ω0 the resonant frequency of each of the two separate acoustic modes, which we

assume are equal for both acoustic modes. The second-order response has very different

characteristics compared to that of a single-pole PPER device, namely a fast frequency

roll-off and high out-of-band suppression. This is demonstrated in Fig. 6.5(a), presenting

the measured frequency response of a single-pole (top panel) and a two-pole PPER device

(bottom panel). The resonances of the single-pole device follow a Lorentzian lineshape,

and the structure supports multiple high-Q resonances. In contrast, the phononic crystal

of the multi-pole device yields an acoustic stop-band, as well as suppression of out-of-band

phonon modes. A comparison of the phonon lineshapes, seen in Fig. 6.5(b), shows the sharp

frequency roll-off enabled by the multi-pole device, resulting in high out-of-band rejection,

with >60 dB of suppression for frequencies >100 MHz from the filter center frequency, an

improvement of 30 dB compared to an equivalent single-pole filter. This property is of

great importance for applications such as channelizers, where different spectral bands may

interfere in the absence of high out-of-band rejection [272]. Furthermore, the multi-pole

pass-band can be designed to have a flatter frequency response when comparing to a typical

Lorentzian lineshape, yielding a closer approximation of an ideal bandpass filter.

6.4.1 Tailoring frequency response through device geometry

In our design, the acoustic modes guided by the two waveguides are coupled in the central

phononic crystal region, and we can control the coupling rate through the number of unit

cells between the waveguide, i.e., the number of rows of holes. This is demonstrated ex-

perimentally in Figs. 6.6(a–c), showing the measured frequency response of three devices

with a resonant frequency Ω0/(2π) = 3.9 GHz, with N = 3, 4, 5 rows of holes between the

two acoustic waveguides, yielding fitted coupling rates µ/(2π) = 10.5, 5, 2 MHz, respec-

tively, and acoustic dissipation rates Γ/(2π) = 4.6, 4.4, 5.1 MHz. The two peaks in the

frequency response are separated by δΩ = 2µ[1− (Γ/(2µ))2]1/2, which can be described

as the frequency splitting resulting from the coupling of two degenerate acoustic modes,

or equivalently, the frequencies of the two eigenmodes of the coupled system. When the
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Figure 6.5: (a) Top: Measured frequency response of a single-pole PPER device, without
a phononic crystal structure (such as was used in Ref. [187]), showing limited out-of-band
suppression. Bottom: Measured frequency response of a two-pole PPER device using a
phononic crystal structure, resulting in a stop-band, as well as suppression of spurious acous-
tic resonances. (b) Magnified view of the phonon resonances at 5 GHz of the single-pole
device and 3.9 GHz of the two-pole device, shifted in frequency for comparison. Reproduced
from Ref. [156].

coupling is smaller than half the dissipation rate (µ < Γ/2), this yields a single-peaked line

shape, as is the case for N = 5.

The forward Brillouin interaction can also be measured through spontaneous scattering,

which occurs in the PPER devices as a result of the thermal occupation of the acoustic

modes at room temperature, as was described in Chapter 3. The power spectrum of these

fluctuations can be described by summing the contribution of the acoustic super-modes of

the device (see Section 3.3.3), given by

|χN (Ω)|2 =
|V+|2

(Γ/2)2 + (Ω− Ω0 + µ)2 +
1− |V+|2

(Γ/2)2 + (Ω− Ω0 − µ)2 , (6.2)

where V+ is a parameter that takes into account possible asymmetry between the two

phonon modes, which will be discussed in detail in Section 6.4.2. Figs. 6.6(d–f) show mea-

sured spontaneous Brillouin scattering of the three devices, demonstrating the frequency

response for different coupling rates. The fitted coupling rates from the spontaneous mea-

surements are µ/(2π) = 10.1, 4.6, 2 MHz, in good agreement with the measurements from

Figs. 6.6(a–c). Fig. 6.7(d) presents the measured acoustic coupling rates, showing how the

coupling rate drops as hole rows are added, consistent with the decay of the acoustic field



CHAPTER 6 145

3.88 3.9 3.92
-25

-20

-15

-10

-5

0

a c

3.88 3.9 3.92
-25

-20

-15

-10

-5

0

d

3.88 3.89 3.9 3.91
0

0.2

0.4

0.6

0.8

1

b

3.88 3.9 3.92
-25

-20

-15

-10

-5

0

f

3.88 3.89 3.9 3.91
0

0.2

0.4

0.6

0.8

1

e

3.88 3.89 3.9 3.91
0

0.2

0.4

0.6

0.8

1

Figure 6.6: (a–c) Normalized measured frequency response of PPER filters with N = 3, 4, 5
rows of holes between the two acoustic defect regions, respectively. (d–f) Normalized
measurements of spontaneous Brillouin scattering in the same three devices, revealing the
thermal occupation of the two super-modes. The phononic crystal design used in these
devices has a pitch of a = 600 nm and hole diameter of d = 462 nm, and the acoustic
waveguides have a width of W = 3.3 µm. Reproduced from Ref. [156].

in the phononic crystal stop-band. The control over the coupling rate enables the design

of different frequency responses, which will correspond to the filter lineshape, as shown in

Figs. 6.7(e,f), where responses with two peaks and a single peak are demonstrated.

The acoustic resonant frequency can be tailored through the width of the acoustic waveg-

uides, set by the distance between the phononic crystal regions, illustrated in Fig. 6.7(a).

By fabricating devices with acoustic waveguide widths between 3–3.9 µm, the resonant fre-

quency of the PPER operation was measured in the range 3.38–4.23 GHz, as shown in Fig.

6.7(b). The resonant frequency follows an inverse relation to the width (Ω0 ∝ W−1), seen

in Fig. 6.7(c), demonstrating how the filter frequency can be tuned through the device

geometry. We can see that the coupling rate is higher for wider waveguides, as seen in

Fig 6.7(b), where the lower frequency resonances show a visible frequency splitting. These
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Figure 6.7: (a) A schematic illustration of a two-pole PPER device. The length W is
the width of each waveguide, and N denotes the number of rows of holes in the center of
the structure. (b) The measured resonant frequencies of devices fabricated with different
waveguide widths. The difference in the filter lineshape is a result of the different coupling
rates for different acoustic frequencies. The phononic crystal design used in these devices
has a pitch of a = 600 nm and a hole diameter of d = 462 nm. (c) Measured Brillouin
frequency, corresponding to the data in panel (b), showing an inverse relation between the
frequency and width Ω0 ∝ W−1. (d) Fitted coupling rates (µ) for measured two-poles
devices, with different numbers of rows of holes (N). The two data points at each value
of N correspond to two different devices. (e) Measured frequency response of a device
with N = 3 rows of holes, where the frequency splitting δΩ can be resolved, resulting in
two peaks. (f) Measured frequency response of a device with N = 5 rows of holes, where
the frequency splitting cannot be resolved, yielding a single peak. A single-pole Lorentzian
lineshape is shown for reference. Adapted from Ref. [156].
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correspond to lower frequency modes, having longer wavelengths, such that effectively the

distance between the two waveguides is shorter.

6.4.2 Non-identical acoustic modes

In our analysis so far, we have considered the two acoustic modes to be identical, as the

design of the two-pole PPER device is completely symmetric, i.e., we are coupling two iden-

tical structures. However, fabrication imperfections and material nonuniformity can lead

to an asymmetry between the two acoustic modes. A deviation of a few nanometers, well

below fabrication tolerances, can lead to ∼MHz shift in the acoustic resonance frequency,

which can have a measurable effect.

To take possible asymmetry into account, we describe the acoustic modes of each of the

two coupled waveguides using two different frequencies, Ω
(A)
0 and Ω

(B)
0 . Following the de-

scription in Chapter 3 (see Section 3.3.3), we can write the acoustic part of the Hamiltonian

describing two coupled acoustic modes with a coupling rate µ

Hac = ~
∫
dz

(
b(A)† b(B)†

)Ω
(A)
0 µ

µ∗ Ω
(B)
0


b(A)

b(B)

. (6.3)

The matrix in Eq. (6.3) is Hermitian, and we can diagonalize it using a unitary matrix V

such that Ω+ 0

0 Ω−

 = V †

Ω
(A)
0 µ

µ∗ Ω
(B)
0

V, (6.4)

where Ω± are the eigenfrequencies of the coupled system, and the eigenmodes are given by

b+
b−

 = V †

b(A)

b(B)

 . (6.5)

The eigenfrequencies are given by

Ω± = Ω0 ±

√(
∆Ω

2

)2

+ |µ|2, (6.6)
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where we have defined the average frequency Ω0 = (Ω
(A)
0 + Ω

(B)
0 )/2 and the frequency

difference ∆Ω = Ω
(B)
0 − Ω

(A)
0 . The elements of the unitary matrix V are given by

V
(A)
± =

1

N±

−∆Ω

2 |µ|
±

√
1 +

(
∆Ω

2 |µ|

)2
 , V

(B)
± =

1

N±
arg (µ) , (6.7)

with the normalization factor

N± =

√√√√√1 +

∣∣∣∣∣∣∆Ω

2|µ|
∓

√
1 +

(
∆Ω

2|µ|

)2
∣∣∣∣∣∣
2

. (6.8)

Here, we have used the notation

V =

V (A)
+ V

(A)
−

V
(B)

+ V
(B)
−

 (6.9)

to refer to the different matrix elements.

Since the diagonalizing matrix V is unitary, the matrix elements follow the relations

∣∣∣V (A)
+

∣∣∣2 +
∣∣∣V (A)
−

∣∣∣2 = 1,
∣∣∣V (B)

+

∣∣∣2 +
∣∣∣V (B)
−

∣∣∣2 = 1, V
(B)
± V

(A)
±
∗

+ V
(B)
∓ V

(A)
∓
∗

= 0, (6.10)

which is equivalent to the orthonormality of the eigenbasis. Figs. 6.8(a,b) show the depen-

dence of the eigenfrequencies and the coefficients V
(`)
± on the asymmetry between the two

acoustic modes. We can see that in the case of two identical modes, the frequency difference

between the eigenmodes is exactly twice the coupling rate, and the coefficients are equal in

magnitude |V (`)
± |2 = 1/2. When asymmetry is introduced, the frequency splitting grows,

and the coefficients are no longer equal.

The equations of motion describing the optical and acoustic modes in the two waveguides
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Figure 6.8: (a) Calculated acoustic eigenfrequencies of a PPER device, as a function of the
asymmetry between the two acoustic modes. (b) The coefficients determining the frequency
response (Eq. (6.7)) as a function of asymmetry between the acoustic modes. (c) The fre-
quency response of the phase modulation experienced by the field propagating in the ‘emit’
waveguide, for different amounts of asymmetry. (d) The power spectrum of spontaneous
Brillouin scattering in the ‘receive’ waveguide, for different amounts of asymmetry. (e) The
filter shape of a PPER operation, for different amounts of asymmetry. The calculations
assume Ω0/Γ = 1000 and µ = Γ/2. Reproduced from Ref. [156].
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of the PPER, as were derived in Chapter 3, are given by

b± =

(
1

Ω− Ω± + iΓ
2

)∑
n

(
g

(A)
±
∗
a(A)
n a

(A)
n−1

†
+ g

(B)
±
∗
a(B)
n a

(B)
n−1

†
)
,

∂

∂z
a(A)
n = − i

v

(
g

(A)
+ a

(A)
n−1b+ + g

(A)
+

∗
a

(A)
n+1b

†
+ + g

(A)
− a

(A)
n−1b− + g

(A)
−
∗
a

(A)
n+1b

†
−

)
,

∂

∂z
a(B)
n = − i

v

(
g

(B)
+ a

(B)
n−1b+ + g

(B)
+

∗
a

(B)
n+1b

†
+ + g

(B)
− a

(B)
n−1b− + g

(B)
−
∗
a

(B)
n+1b

†
−

)
.

(6.11)

Here, A and B denote the ‘emit’ and ‘receive’ waveguides of the PPER, respectively, v is the

optical group velocity of the guided optical modes, and we have absorbed the coefficients V

into the acousto-optic coupling rates g, such that g
(`)
± = g(`)V

(`)
± . Following the derivation

presented earlier (see Section 3.3.1), the phonon fields in the PPER structure are given by

b± ∝ −iχ±g(A)
±
∗ ∣∣∣a(A)

0 (0)
∣∣∣2 , (6.12)

where we have defined the frequency responses χ± = [i(Ω±−Ω)+Γ/2]−1. Substituting this

expression into the equations of motion of the optical fields yields

∂

∂z
a(A)
n ∝ −1

v

∣∣∣a(A)
0 (0)

∣∣∣2 [a(A)
n−1e

iΛ

(
χ+

∣∣∣g(A)
+

∣∣∣2 + χ−

∣∣∣g(A)
−

∣∣∣2)
− a(A)

n+1e
−iΛ

(
χ∗+

∣∣∣g(A)
+

∣∣∣2 + χ∗−

∣∣∣g(A)
−

∣∣∣2)],
∂

∂z
a(B)
n ∝ −1

v

∣∣∣a(A)
0 (0)

∣∣∣2 [a(B)
n−1e

iΛ
(
χ+g

(B)
+ g

(A)
+

∗
+ χ−g

(B)
− g

(A)
−
∗)

− a(B)
n+1e

−iΛ
(
χ∗+g

(B)
+

∗
g

(A)
+ + χ∗−g

(B)
−
∗
g

(A)
−

) ]
.

(6.13)

We factor out the coupling rate g
(l)
± = g(l)V

(l)
± , leaving us with

∂

∂z
a(A)
n ∝ −1

v

∣∣∣a(A)
0 (0)

∣∣∣2 ∣∣∣g(A)
∣∣∣2 ∣∣∣χ(A)

∣∣∣ (a(A)
n−1e

iφ(A) − a(A)
n+1e

−iφ(A)
)
,

∂

∂z
a(B)
n ∝ −1

v

∣∣∣a(A)
0 (0)

∣∣∣2 ∣∣∣g(B)g(A)∗
∣∣∣2 ∣∣∣χ(A→B)

∣∣∣ (a(B)
n−1e

iφ(A→B) − a(B)
n+1e

−iφ(A→B)
)
,

(6.14)

where we have defined the frequency response in each waveguide

χ(A) =

[
χ+

∣∣∣V (A)
+

∣∣∣2 + χ−

∣∣∣V (A)
−

∣∣∣2 ], χ(A→B) =

[
χ+V

(B)
+ V

(A)
+

∗
+ χ−V

(B)
− V

(A)
−
∗
]
, (6.15)
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and denoted the phase responses φ(A) = arg(χ(A)), φ(A→B) = arg(χ(A→B)). Using the

unitary relations from Eq. (6.10) we can rewrite these frequency responses as

χ(A) =

[
χ+

∣∣∣V (A)
+

∣∣∣2 + χ−

(
1−

∣∣∣V (A)
+

∣∣∣2)], χ(A→B) = V
(B)

+ V
(A)

+

∗[
χ+ − χ−

]
. (6.16)

The frequency response χ(A→B) describes the filter lineshape obtained in the PPER opera-

tion (transducing information from waveguide A to B), whereas χ(A) describes the frequency

response of the phase modulation experienced by the optical field propagating through the

‘emit’ waveguide. We can also analyze the spectrum of spontaneous Brillouin scattering,

calculated by an incoherent sum of the two acoustic super-modes. The resulting power

spectrum of these thermal fluctuations in waveguide B (which can determine the noise floor

of a PPER-based photonic filter, for example) is given by

∣∣∣χ(B)
N

∣∣∣2 =

[
|χ+|2

∣∣∣V (B)
+

∣∣∣2 + |χ−|2
(

1−
∣∣∣V (B)

+

∣∣∣2)]. (6.17)

Figs. 6.8(c–e) present calculated frequency responses for different amounts of asymme-

try in the two acoustic modes using Eqs. (6.16) and (6.17), showing that χ(A→B) stays

symmetric around the pass-band center, even in the case of non-identical acoustic modes.

In contrast, the functions χ(A) and |χ(B)
N | show increasing asymmetry for larger values of

∆Ω. Additionally, we see that χ(A) and χ
(B)
N are mirrored across the center frequency when

switching the roles of ‘emit’ and ‘receive’ waveguides, i.e., looking at the responses χ(B) and

χ
(A)
N . The effects of this assymetry can be demonstrated experimentally, as seen in Fig.

6.9, showing the measured frequency response of spontaneous scattering (panels (a,b)), and

forward Brillouin-induced phase modulation (panels (c,d)). As can be seen from the data,

the asymmetric line shapes are mirrored through the center of the trace when switching

between waveguides A and B, as expected from Eqs. (6.16) and (6.17). The measurements

are consistent with an asymmetry of ∆Ω = 2.65±0.5 MHz, corresponding to a deviation of

0.03% per waveguide from the average frequency, which can be a result of variations on the

order of ∼2 nm in the geometry of each of the two acoustic guiding structures. In contrast,

Fig. 6.9(e) shows that the PPER filter response does not change when switching the roles of
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‘emit’ and ‘receive’ between waveguides A and B (i.e., χ(A→B) = χ(B→A)), consistent with

Eq. (6.16).

6.4.3 Effects of optical cross-talk

Up to this point, we have assumed that there is no optical cross-talk between the ‘emit’

and ‘receive’ waveguides. This is a good assumption, as the optical guiding regions of

the waveguides are separated by a distance larger than the optical wavelength scale. A

measurement of the optical cross-talk in a two-pole PPER device is presented in Fig. 6.10(f),

showing −60 dB of optical cross-talk. However, residual coupling occurring in other parts

of the chip could affect the filter lineshape obtained in a PPER operation and should be

considered. Using Eq. (6.11), and assuming optical cross-talk ε from waveguide A to B,

the phonon field can be described by

b± ∝ −iχ±
(
g

(A)
±
∗

+ εg
(B)
±
∗) ∣∣∣a(A)

0 (0)
∣∣∣2 , (6.18)

where we have assumed |ε| � 1 such that we can neglect the energy lost in waveguide A,

and we have denoted the frequency response χ± = [i(Ω±−Ω) + Γ/2]−1. Plugging back into

Eq. (6.11) gives us the equation of motion for the optical field in waveguide B

∂

∂z
a(B)
n ∝ −1

v

∣∣∣a(A)
0 (0)

∣∣∣2(a(B)
n−1

[
χ+

(
g

(B)
+ g

(A)
+

∗
+ ε

∣∣∣g(B)
+

∣∣∣2)+ χ−

(
g

(B)
− g

(A)
−
∗

+ ε
∣∣∣g(B)
−

∣∣∣2)]

− a(B)
n+1

[
χ∗+

(
g

(B)
+

∗
g

(A)
+ + ε∗

∣∣∣g(B)
+

∣∣∣2)+ χ∗−

(
g

(B)
−
∗
g

(A)
− ε∗

∣∣∣g(B)
−

∣∣∣2)]).
(6.19)

We factor out the rate g, yielding

∂a
(B)
n

∂z
∝ −1

v
|g|2

∣∣∣a(A)
0 (0)

∣∣∣2 ∣∣∣χ̃(A→B)
∣∣∣ (a(B)

n−1e
iφ̃(B) − a(B)

n+1e
−iφ̃(B)

)
, (6.20)
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Figure 6.9: (a) Normalized power spectrum of spontaneous Brillouin scattering in the
‘emit’ waveguide. (b) Normalized power spectrum of spontaneous Brillouin scattering in
the ‘receive’ waveguide, showing a mirrored lineshape. (c) Normalized frequency response
of the phase modulation experienced by an optical field propagating in the ‘emit’ waveguide.
(d) Normalized frequency response of the phase modulation experienced by an optical field
propagating in the ‘receive’ waveguide, showing a mirrored lineshape. (e) The two-pole
filter lineshape of a PPER operation is identical for both possible choices of ‘emit’ and
‘receive’ waveguides. Reproduced from Ref. [156].
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where φ̃(A→B) = arg(χ̃(A→B)) and the frequency response is given by

χ̃(A→B) =

[(
V

(B)
+ V

(A)
+

∗
+ ε

∣∣∣V (B)
+

∣∣∣2)χ+ −
(
V

(B)
+ V

(A)
+

∗
− ε

(
1−

∣∣∣V (B)
+

∣∣∣2))χ−]. (6.21)

We can see that even in the case of two identical acoustic modes, such that V
(B)

+ V
(A)

+

∗
=

|V (B)
+ |2 = 1/2, we have

χ̃(A→B) =
1

2

[
(1 + ε)χ+ − (1− ε)χ−

]
, (6.22)

revealing the asymmetric response as a result of the non-negligible cross-talk, seen in Fig.

6.10(a). This line shape can be slightly altered when considering a phase shift induced in

the coupling, equivalent to a complex-valued ε.

6.4.4 Effects of Kerr nonlinearities

When optical cross-talk occurs in the device, we should consider the effects of Kerr-induced

four-wave-mixing in the ‘receive’ waveguide, which also occurs in the silicon waveguides [64].

The interplay between Kerr and forward Brillouin nonlinearities alters the lineshape of the

Brillouin frequency response [176, 279], and needs to be taken into account for practical

applications [280]. Analyzing one of the optical sidebands (n = −1 in this example), we

can write the contribution of both Brillouin and Kerr nonlinearities [44]

∂

∂z
a

(B)
−1 ∝ −i

[
GBΓ

4
χ̃(A→B) + 2εγKerr

] ∣∣∣a(A)
0 (0)

∣∣∣2 a(B)
0 , (6.23)

where GB = 4|g|2/(~ωΓv2) is the Brillouin gain coefficient, Γ the acoustic dissipation rate,

χ̃(A→B) the Brillouin frequency response from Eq. (6.22), and γKerr is the Kerr coefficient.

We assume that the Kerr nonlinearity has no frequency dependence over the bandwidth of

interest, as it is typically a wideband effect (∼500 GHz) compared to the Brillouin frequency

response (∼5 MHz). In the silicon structures we are studying here, the Kerr coefficient

is an order of magnitude smaller than that of the Brillouin gain [64]. Figs. 6.10(b–e)

show calculated filter line shapes when including optical cross-talk and four-wave-mixing,
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Figure 6.10: (a) Calculated two-pole filter lineshapes of a PPER operation, including dif-
ferent amounts of optical cross-talk ε. (b–e) Calculated two-pole filter lineshapes of a
PPER operation including optical cross-talk and Kerr-induced four-wave-mixing, showing
how different relative phases between the Brillouin and Kerr nonlinearities result in different
lineshapes. The calculations assume Ω0/Γ = 1000 and µ = Γ/2. (f) Measured cross-talk in
a two-pole PPER device, showing −60 dB of optical power leaking from the ‘emit’ to the
‘receive’ waveguide. P (emit) is the optical power injected into waveguide A and P (rec) is the
optical power measured at the output of waveguide B. Reproduced from Ref. [156].
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assuming |γKerr/GB| = 0.15. Since these are coherent processes, varying the phase between

the two nonlinear contributions will yield different line shapes. This phase difference can

be a result of the optical coupling mechanism leading to the cross-talk, as well as the phase

difference between the optical fields in waveguides A and B. The Kerr coefficient has a small

magnitude compared to the Brillouin contribution, hence the four-wave-mixing results in a

small change to the line shape at the center of the filter pass-band. Appreciable deviation

is only seen at frequencies outside the half-maximum of the response and can be neglected

in many practical cases (such as filtering).

6.4.5 Third-order filters

The PPER-based filtering scheme can be extended to higher-order filters by coupling more

acoustic modes, as was discussed in Chapter 3. For example, when coupling three identical

acoustic modes (bA, bB, bC), with a resonant frequency Ω0, dissipation rate Γ, and nearest-

neighbor coupling rate µ, the frequency response is given by

∣∣∣χ(3 pole)(Ω)
∣∣∣2 ∝ µ4[

(Γ/2)2 + (Ω− Ω−)2
] [

(Γ/2)2 + (Ω− Ω0)2
] [

(Γ/2)2 + (Ω− Ω+)2
] .
(6.24)

The three super-modes of the coupled system are

b− =
(
bA −

√
2 bB + bC

)
/2, b0 = (bA − bC) /

√
2, b+ =

(
bA +

√
2 bB + bC

)
/2,

(6.25)

with frequencies

Ω− = Ω0 +
√

2µ, Ω0, Ω+ = Ω0 −
√

2µ. (6.26)

A three-pole PPER device is schematically illustrated in Fig. 6.11(a), where three acoustic

waveguides of width W are coupled through N rows of holes. Simulation of the acoustic

super-modes supported by the structure are presented in Fig. 6.11(b), consistent with Eq.

(6.25).

We fabricate such three-pole PPER devices, with N = 3, 4, 5 rows of holes between each

of the acoustic waveguides, an example of which is shown in Fig. 6.11(c). Measurements of
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the frequency response are presented in Figs. 6.11(d–f), and the fitted parameters are con-

sistent with a phonon frequency Ω0/(2π) = 4.24 GHz, coupling rates µ/(2π) = 7.5, 2.1, 1.8

MHz, respectively, and acoustic dissipation rates Γ/(2π) = 7, 7.7, 9.3 MHz. The non-ideal

lineshapes obtained in the measurements can be the consequence of the larger device struc-

ture, resulting in a wider suspended region, as well as the need to define more holes in

the phononic crystal, which can lead to a larger degree of nonuniformity in the fabrication

process, deviating from theory [281]. The devices presented in this work were all fabricated

using a two-step electron-beam lithography process which can suffer from drift, however,

implementation of these designs using photolithography may yield higher uniformity and
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Figure 6.11: (a) An illustration of a three-pole device, showing the three waveguides of
width W , with nearest-neighbor coupling through N rows of holes. (b) FEM simulation
of the x component of the displacement (ux) of the three acoustic super-modes taking part
in the PPER operation. (c) Micrograph image with enhanced colors of a top-down view
of a fabricated three-pole PPER device. (d–f) Normalized measured frequency response
of three-pole PPER filters with N = 3, 4, 5 rows of holes between the acoustic waveguides,
respectively. The phononic crystal design used in these devices had a pitch of a = 600
nm, hole diameter of d = 462 nm, and a waveguide width of W = 3 µm. Adapted from
Ref. [156].
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more ideal line shapes (see Section 6.6 for more details).

6.5 Spatially-distributed Brillouin-active segments

The control over the PPER frequency response through the device geometry, combined with

the strong forward Brillouin scattering in silicon, enables us to measure the response from

short active segments, with higher spatial resolution than previously demonstrated [239,

282]. This can be achieved by designing a PPER device with multiple active regions, each

supporting a different resonant frequency. Through the design, we know which resonance

corresponds to each segment, enabling us to monitor the frequency response of different

regions on the chip, as illustrated in Fig. 6.12(a).

We demonstrate cascaded PPER sections experimentally by measuring four 50 µm long

PPER segments with acoustic waveguide widths varying by 60 nm between segments (the

active PPER region design follows Ref. [187]), as seen in Figs. 6.12(b,c). The measured

frequency shifts by 1.18 MHz per nanometer, and the 20 dB signal-to-noise suggests that

a measurable signal could be detected using sub-micron active-length segments. A second

demonstration, seen in Figs. 6.12(d,e), shows measurement from four two-pole PPER seg-

ments, where the acoustic waveguide width is varied by 15 nm between segments, resulting in

the resonant frequency shifting by 0.62 MHz per nanometer. Given the ∼3 MHz linewidths

of the resonances, we can expect to resolve a change of acoustic waveguide dimensions on

the order of single nanometers. As the acoustic response is affected by temperature, strain,

and mass, devices of this type could be used as on-chip sensors, and could, for example,

detect the bonding of different chemical compounds to the surface of the material [275,276].
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Figure 6.12: (a) Schematic illustration of the measurement scheme. An RF tone driving
an intensity modulator is swept, and the demodulated output signal is measured using a
spectrum analyzer. (b) Measurement of a PPER device with four active segments (fol-
lowing the device design from Ref. [187]). Each segment is 50 µm long, with an increase
of 60 nm in acoustic waveguide width between segments, resulting in well-resolved peaks
with a bandwidth of ∼4 MHz. (c) Fitting the acoustic resonant frequency (the peaks from
panel (b)) as a function of waveguide width results in a linear slope of 1.1836 MHz/nm.
(d) Measurement of a two-pole PPER device with four 500 µm long active segments. The
acoustic waveguide width between segments is increased by 15 nm, resulting in peaks with
a bandwidth of ∼3 MHz. (e) Fitting the peaks from panel (d) results in a slope of 0.62
MHz/nm. The factor ∼2 difference in the fitted slopes between panels (c) and (e) is a con-
sequence of the different acoustic modes used in the single-pole PPER segments compared
to the two-pole PPER segments.
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6.6 Device fabrication

The Brillouin-active PPER devices presented in this chapter were fabricated in a standard

silicon-on-insulator (SOI) material platform, using standard silicon processing methods.

In this section, we will present devices fabricated using both electron-beam lithography

and photolithography, demonstrating the repeatable results enabled by using these well-

established fabrication methods.

6.6.1 Yale fabrication process

The measurements presented up until now were of devices fabricated using electron-beam

lithography at Yale University in the Applied Physics Cleanroom1 and the Yale Institute

for Nanoscience and Quantum Engineering (YINQE)2. First, Cr/Au alignment markers

were defined on a 6′′ silicon-on-insulator (SOI) wafer using electron-beam lithography and

a liftoff procedure, after which the wafer was diced into 35 × 22 mm rectangular chips.

Next, an electron-beam lithography step defines the optical waveguide rib structures using

hydrogen silsesquioxane (HSQ) electron-beam resist (XR1541 6%), development in MF-312,

and a Cl2 reactive ion etch (RIE), removing 80 nm of silicon. A second lithography step is

used to define the array of holes and slots using either ZEP520A or CSAR electron-beam

resist, followed by development in Xylenes. The remainder of the silicon is removed through

another Cl2 RIE, exposing the oxide. Finally, a wet-etch using 49% hydrofluoric (HF) acid

removes the oxide under-cladding to suspended the Brillouin-active sections.

The fabricated devices exhibit highly repeatable and consistent results, which we demon-

strate by fabricating 16 two-pole PPER devices on the same chip. All of the devices show

good performance (100% yield), exhibiting a two-pole lineshape with a bandwidth of a few

MHz, seen in 6.13(a). Fitted parameters are displayed in Fig. 6.13(b), demonstrating high

consistency. The lineshapes vary slightly between devices, consistent with different design

parameters in the geometry of each device such as the number of hole rows between the

1. https://cleanroom.yale.edu

2. https://nano.yale.edu

https://cleanroom.yale.edu
https://nano.yale.edu
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Figure 6.13: (a) Measurements of 16 devices fabricated on the same chip using electron-
beam lithography, all showing a two-pole frequency response around 3.9 GHz. The variation
of the center frequency and precise line shapes are the result of a slightly different geometry
of each device. (b) Fitted parameters to the filter lineshapes, showing high consistency in
the center frequency (Ω0), Q-factor of the acoustic modes (Ω0/Γ), acoustic coupling rate
(µ), and full-width at half-maximum (FWHM) of the two-pole lineshape. (c) Analyzing a
wider frequency span shows a stop-band width on the order of 1.5 GHz (shaded region).
(d) Repeated measurements of a single device over a period of eleven months show no
degradation of performance and no change in the two-pole lineshape. The center frequency
shows a fluctuation of 0.1%, which can be the result of temperature variation between
measurements. Adapted from Ref. [156].
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waveguides, and waveguide width. A wider frequency sweep, seen in Fig. 6.13(c), shows

that all devices have an acoustic stop-band of ∼1.5 GHz with >50 dB suppression, and

acoustic modes in the range 3.85–3.90 GHz.

The devices show highly consistent results when used over long periods of time. Re-

peated measurements show no deterioration in performance, an important advantage of sili-

con when comparing to other materials used for integrated Brillouin-active devices [283,284].

This is demonstrated in Fig. 6.13(d), showing measurements of the frequency response of

the same device, spanning eleven months. The lineshape is identical in all measurements,

showing a full-width at half-maximum (FWHM) of 6.2 MHz at a center frequency of 3.90

GHz. The measurements were all performed at atmospheric pressure, without environmen-

tal control, and with no active stabilization. The variation of 0.1% (4 MHz) in the center

frequency can be the result of ambient temperature fluctuations, or the amount of optical

power on-chip at the time of the measurements, which can readily be stabilized. These

results show the potential of these silicon-based devices to be good candidates for practical

applications and field deployment.

6.6.2 Sandia Laboratories fabrication process

Brillouin-active devices can also be fabricated using CMOS-foundry photolithography [285],

as they are implemented in a standard silicon-on-insulator (SOI) platform. We fabricated

PPER devices using a well established CMOS silicon-photonic process developed at Sandia

National Laboratories3 MESA facilities4, using a standard SOI processing, and patterned

with stepper photolithography. As such, the fabrication of these devices should be compat-

ible with any commercial CMOS foundry with the additional release step.

The devices were fabricated on 8′′ wafers, with a 230 nm silicon layer structure atop a 3

3. Sandia National Laboratories is a multi-program laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly-owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA-0003525. This dissertation describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in this work do not necessarily represent the views of the U.S. Department
of Energy, or the United States Government.

4. https://www.sandia.gov/mesa/

https://www.sandia.gov/mesa/
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Figure 6.14: (a) Micrograph of six devices fabricated using standard photolithography
in Sandia National Laboratories. (b) Top: Magnified view of the Brillouin-active region
showing the two ridge waveguides and slots. Bottom: Magnified view of the integrated
grating couplers used to couple light on and off the chip. (c) Measured frequency response
of the PPER devices, showing highly repeatable results. (d) Magnified view of the peaks
around 4.39 GHz. The green traces and orange traces correspond to slightly different device
designs, resulting in a ∼20 MHz difference in the resonant frequency. (e) Fitted parameters
to the frequency response center frequency (Ω0), dissipation rate (Γ) and Q-factor.
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µm buries oxide layer. The rib waveguides are defined by etching 80 nm of the silicon layer,

and the holes and slots are achieved by fully etching the silicon layer, exposing the buried

oxide. The devices were fabricated within 4 × 4 millimeter squares on the wafer. Finally,

the active regions of the devices were suspended using a 49% hydrofluoric (HF) acid wet

etch. Examples of fabricated devices are shown in Figs. 6.14(a,b).

The fabrication process yielded highly consistent results. Fig. 6.14(c) shows the mea-

surement of six single-pole PPER devices (following the design from [187]), all having an

identical frequency response. Examining the peaks around 4.37 GHz (Fig. 6.14(d)) shows

the high acoustic quality-factor (Q ∼2000) of all the Brillouin-active modes (Fig. 6.14(e)).

Two-pole PPER devices were also fabricated at the Sandia National Laboratories facility,

demonstrating the feasibility of producing high-quality phononic crystal devices, as seen in

Fig. 6.15(a). The frequency response of two of the fabricated devices is shown in Figs.

6.15(b,d), corresponding to devices with N = 4 and N = 5 rows of holes between the

two waveguides, respectively. A measurement of a wider frequency span is shown in Figs.

6.15(c,e), where we can see a 1.5 GHz acoustic stop-band.

6.7 Conclusion

In this chapter, we have shown the design process of multi-pole PPER devices in a standard

silicon-on-insulator platform and studies the possible frequency responses we can obtain

from such devices, as well as the effects of fabrication imperfections. Through acoustic

mode-engineering, utilizing coupled acoustic modes in a phononic crystal, we can produce

lineshapes with an improvement of 40 dB in out-of-band rejection compared to earlier silicon

PPER-based devices [187]. In contrast to previous multi-pole demonstrations, the devices

were all fabricated using standard SOI wafers and CMOS compatible methods. We have

demonstrated that the devices can be fabricated using CMOS-foundry photolithography,

which can enable the scaling of production, yielding cheap, high-volume, and consistent

results [48, 59]. Moreover, we have shown that silicon PPER devices are reproducible and

that their performance is robust over time, crucial properties for practical technological
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Figure 6.15: (a) Micrograph of a two-pole PPER device fabricated using photolithography
in Sandia National Laboratories. (b) Two-pole frequency response of a device with N = 4
rows of holes between the waveguides. Fitting the frequency response is consistent with a
center frequency of Ω0/(2π) = 3.236 GHz, an acoustic dissipation rate of Γ/(2π) = 1.45
MHz and an acoustic coupling rate of µ/(2π) = 2.83 MHz. (c) Measurement of a wider
frequency span of the device from panel (b). (d) Two-pole frequency response of a device
with N = 5 rows of holes between the waveguides. Fitted parameters yield Ω0/(2π) = 3.235
GHz, Γ/(2π) = 1.69 MHz, and µ/(2π) = 1.10 MHz. (e) Measurement of a wider frequency
span of the device from panel (d).
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applications.

The lineshape obtained by these devices stands out for its ability to produce multi-pole

frequency responses with a narrow (∼MHz) pass-band, and excellent out-of-band suppres-

sion. Additionally, the devices exhibit a wide (∼GHz) stop-band around the pass-band,

with spurious transmission peaks suppressed by more than 30 dB, which can be eliminated

by the use of additional broadband filtering [52, 143]. Similar performance in the opti-

cal domain using ring resonators would require two ultrahigh-Q (>108) resonators, and

ultralow-loss (∼0.1 dB/m) waveguides [52, 253, 254, 286]. Implementing such a device in

silicon would demand a large footprint [223], as well as sub-millikelvin temperature stabil-

ity [51] and narrow-linewidth laser sources. In contrast, the devices in this work have a

footprint of ∼0.1 mm2, which can facilitate integration for filter-bank and channelizing ap-

plications. The measurements presented here were performed with no active stabilization,

as the resonant frequencies are determined in the acoustic domain. To avoid drift of the

filter pass-band over longer time scales, the temperature needs to be stabilized on the order

of ∼1 K. Additionally, we have shown how the PPER design can be extended to produce

higher-order filters.

We have shown how the forward Brillouin process used in the devices demonstrated here

has the advantage of scalability by cascading active segments in series. Multiple PPER

devices could be integrated on the same chip, retaining fidelity as the input signal traverses

the cascaded array, without the need of splitting and amplifying the signal in multiple stages,

which degrade the noise figure of the system. These capabilities could enable channelizing

applications, as well as sensing schemes with record-high spatial resolution.
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Narrowband microwave-photonic

bandpass filtering

7.1 Introduction

In this chapter, we will utilize a two-pole PPER device to experimentally demonstrate

narrowband filtering within a full microwave-photonic link. The device consists of the

Brillouin-active suspended waveguides that were presented in Chapter 6, supporting both

optical modes as well as long-lived acoustic modes. Using a phononic crystal design with

an acoustic stop-band, enabling the coupling of acoustic modes in a controllable fashion,

we demonstrate a second-order filter response with 3.5 MHz full-width at half-maximum

(FWHM) at a center frequency of 3.87 GHz and 70 dB out-of-band suppression. The

microwave-photonic link implementing this filter yields a link gain of G = −17.3 dB. We

further show that the addition of an RF amplifier at the link input enables a larger-than-

unity gain (G = 0.6 dB) and improves the link noise figure. Additionally, by introducing a

tunable local oscillator, we demonstrate the tunability of the filter pass-band over multiple

GHz, while maintaining the highly selective, narrow-bandwidth filter lineshape.

Comparable performance in the optical domain demands ultralow-loss (∼0.1 dB/m)

waveguides and ultrahigh-Q (>108) optical resonators [52,223,253,254,286,287], which are

167
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challenging to realize in silicon-photonic circuits. Narrowband (∼MHz) filtering and long

(>100 ns) signal delays —of the type routinely performed in the acoustic domain— are not

yet possible in silicon photonics, and the results presented here represent ∼100× higher

spectral resolution than previously demonstrated by silicon multi-pole filters [52]. Based

on a recent comprehensive survey of microwave-photonic filters [209], the link performance

of the filter demonstrated here is on par with other microwave-photonic filtering schemes,

while having a narrower bandwidth and higher out-of-band rejection.

7.2 Experimental demonstration

We use a silicon two-pole PPER device, as was described in Chapter 6, with two suspended

rib waveguides, and phononic crystal regions comprised of a cubic lattice of air holes (see

Fig. 6.3). The active region of the device is L = 5 mm long, with N = 5 lines of holes

between the two waveguides, and phononic waveguide regions of width W = 3.3 µm. The

phononic crystal pitch is a = 650 nm with a hole diameter d = 500 nm.

The microwave-photonic link follows our description in Chapter 5, and the experimental

setup used to demonstrate the link is illustrated schematically in Fig. 7.1(a). An RF signal

at frequency Ω modulates an optical tone with frequency ω1 using an intensity modulator

(Optilab IM-1550-20-A), yielding sidebands around the optical carrier. This modulated

optical tone is amplified and injected into the ‘emit’ waveguide of the PPER device. When

the modulation frequency approaches the Brillouin resonance, acoustic waves are emitted

through a forward Brillouin process, resulting in time modulation of the effective refractive

index of both waveguides through photoelastic coupling. A second optical source with

frequency ω2 is injected into the ‘receive’ waveguide of the device, where it experiences

phase modulation by the transduced acoustic fields. Phase demodulation is implemented

with optical filtering using a commercial bandpass filter (Alnair BVF-300CL), and the

signal is detected on a high-power photodiode (Discovery Semiconductors, Inc. DSC100S,

Vbias = 7 V).
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Figure 7.1: (a) Schematic illustration of the experimental setup used to characterize the
PPER-based RF link. IM: intensity modulator, LNA: RF low-noise amplifier, EDFA:
erbium-doped fiber amplifier, PC: polarization controller, BPF: optical band-pass filter,
VNA: RF vector network analyzer. (b) Normalized magnitude of the filter frequency re-
sponse, showing a two-pole lineshape with a FWHM of 3.5 MHz and a 40 dB bandwidth of
38.5 MHz. A Lorentzian (single-pole) lineshape with the same FWHM is shown for refer-
ence. (c) The measured phase response shows a 2π phase-shift over the filter bandwidth.
(d) Measured group delay of the filter, showing τg = 131 ns at the center of the pass-band.
Reproduced from Ref. [156].

7.2.1 Filter frequency response

First, the frequency response of the filter was measured by sweeping the RF frequency Ω

through the acoustic resonance Ω0. The filter exhibits a center pass-band frequency of

Ω0/(2π) = 3.87 GHz, seen in Fig. 7.1(b), with a 3 dB linewidth of ∆Ω/(2π) = 3.5 MHz,

corresponding to a Q-factor of Ω0/∆Ω = 1106. The second-order filter response shows a fast

frequency roll-off of 3.7 dB/MHz, yielding a 40 dB bandwidth of 38.5 MHz, and 70 dB out-

of-band suppression at frequencies 100 MHz from the center of the pass-band. In comparison

to a Lorentzian lineshape with the same full-width at half-maximum (FWHM), this two-

pole lineshape yields a 35 dB improvement in out-of-band suppression. The measured phase

response is presented in Fig. 7.1(c), showing a 2π phase shift over the filter bandwidth,

and the measured group delay of the filter (τg = −∂φ/∂Ω) is τg = 131 ns at the center of
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the pass-band, as seen in Fig. 7.1(d). These measurements are consistent with a phonon

dissipation rate of Γ/(2π) = 3.7 MHz and an acoustic coupling rate of µ/(2π) = 1 MHz.

The smooth phase response suggests that the RF signal propagates throughout the filter

with minimal distortion.

7.3 Microwave-photonic link performance

Next, we analyze the performance of a full microwave link implementing a bandpass filtering

operation using the PPER device, as was discussed in Chapter 5. Fig. 7.2(a) shows the

aggregated measurements of single RF tones at the filter output, for an input RF power of

−4 dBm, tuned to the center of the pass-band, and at frequencies 5 MHz and 10 MHz from

the pass-band center. We can see the suppression of the signal as we tune it away from the

center frequency, consistent with the two-pole frequency response. We can also see that the

noise floor of the RF link is comprised of a Lorentzian-like peak —a result of spontaneous

Brillouin scattering occurring in the ‘receive’ waveguide— and a wideband noise background

(dominated by EDFA noise), seen in Figs. 7.2(a,b). The spontaneous Brillouin scattering

is due to the thermal occupation of the phonon modes at room temperature, which has an

average phonon number of kBT/(~Ω0) = 1565. [187].

The RF link performance was characterized by measuring the RF power at the output

of the filter (PRF
out ) as a function of the input RF power (PRF

in ). Fig. 7.2(c) presents the

link performance, with an ‘emit’ optical power of 105 mW and with 76 mW incident on the

photodetector. The noise spectral density at the center of the pass-band was measured at

N = −134.6 dBm/Hz. The RF link gain was measured at G = −17.3 dB, yielding a link

noise figure of NF = N −G−Nin = 56.7 dB, where we have assumed thermal noise at the

link input (i.e., Nin = kBT = −174 dBm/Hz). The linear dynamic range of the link (up to

1 dB compression from a linear response) was measured at CDR1dB = 119.1 dB Hz.

We study the nonlinearity of the microwave-photonic link by quantifying the third-order

spurious tone generated in the link, which can lead to distortion of the filtered signal [198],

as was discussed in Section 5.4.3. We inject an input RF tone at frequency Ω = Ω0/3, and



CHAPTER 7 171

d

0

ec

10

18 dB

1.6 dB

2 MHz

-5 0 5

-90

-80

-70

-60

-50

-20 -15 -10 -5

-60

-40

-20

0
Link gain

-20 -10 0 10 20

-80

-60

-40

-20

0 Link gain

b

10 20 30 50 70
-155

-150

-145

-140

-135

-20 0 20

-138

-136

-134
Brillouin

noise

a

-80

-60

-40

5 10-5 0

Figure 7.2: (a) Measured spectrum from the filter output, for input signals at the center
of the filter pass-band, as well as frequencies 5 MHz and 10 MHz away from the center
frequency. Parameters used for calculating the theoretical plots are presented in Table
7.2. (b) Measured peak value of the noise power spectral density, as a function of the
optical power on the detector, and the extracted thermal-Brillouin contribution to the
noise. Inset: Measured noise spectral density, when the optical power on the detector is 70
mW, showing the narrowband thermal Brillouin peak. (c) Measured RF output power as a
function of RF input power for the fundamental (blue) and third harmonic (red) tones of the
filter. Extrapolated linear trends, the third-order intercept point (OIP3), and link gain are
shown for reference. The bandwidth used in the measurement was 300 Hz. (d) Repeated
measurement after adding an RF amplifier (LNA) at the filter input (see Fig. 7.1(a)). (e)
Measured output spectrum of the RF link, with (blue) and without (orange) the LNA at
the link input, when the input signal is 10 MHz from the center of the filter pass-band. The
LNA amplifies the signal power by 18 dB, while the noise floor does not change (magnified
in inset). The bandwidth used in the measurements was 50 kHz. Adapted from Ref. [156].
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Table 7.1: Measured microwave link parameters, with and without an RF amplifier at the
link input, corresponding to the data presented in Fig. 7.2(c,d). Adapted from Ref. [156].

Parameter PPER PPER+LNA Description

G (dB) −17.3 0.6 RF link gain

N (dBm/Hz) −134.6 −134.2 Noise floor

NF (dB) 56.7 39.2 Noise figure1

OIP3 (dBm) 5.6 −1.5 Output intercept point2

SFDR3

(
dB Hz2/3

)
93.5 88.5 Spur-free dynamic range3

P 1dB
in (dBm) 1.7 −15.2 1 dB compression point

CDR1dB (dB Hz) 119.1 119.6 Linear dynamic range4

1 Noise figure was calculated using NF = N − G − Nin (with Nin = kBT = −174
dBm/Hz).
2 Inter-modulation OIP3 is 4.8 dBm lower.
3 Spur-free dynamic range is given by SFDR3 = (2/3)(OIP3 − N). Inter-modulation
spur-free dynamic range is 3.2 dB Hz2/3 lower.
4 Linear dynamic range was calculated using CDR1dB = P 1dB

in +G−N .

measure the output RF power at frequency Ω0, as seen in Fig. 7.2(c), yielding a spurious-

free dynamic range of SFDR3 = 93.5 dB Hz2/3. The third-order spurious tone is a result of

the intensity modulator used at the link input, which can be suppressed using linearization

schemes [201]. The SFDR3, obtained here using a third-harmonic measurement, can be

related to an inter-modulation distortion (IMD), as measured when implementing a two-

tone test [198], yielding SFDR
(IMD)
3 = 90.3 dB Hz2/3. These results can be improved

further by using higher optical powers, as well as using a modulator with a lower half-wave

voltage [53], as was discussed in Chapter 5. A summary of the measured link parameters is

presented in Table 7.1.

The high noise figure obtained from the microwave-photonic link —typical of Brillouin-

based filtering [35,144]— is a result of spontaneous Brillouin scattering generating noise in

the link. However, the PPER-based filtering scheme offers a unique design space in which

we can enhance the noise performance of the RF link, as was described in Chapter 5. More

specifically, the noise figure can be improved by increasing the transduction strength in the

‘emit’ waveguide. Since the noise is set by thermal-Brillouin noise (spontaneous scattering)

in the ‘receive’ path, the link gain will increase without affecting the noise floor, achieving

a lower noise figure.

One way to improve the noise figure of a noisy system is to add a low-noise amplifier
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Table 7.2: Parameters used for the theory trends of Figs. 7.1 and 7.2. Adapted from
Ref. [156].

Parameter Value Description

λ (nm) 1530 Optical wavelength

T (K) 290 Temperature

Ω0 (2π GHz) 3.86 Phonon frequency

Γ (2π MHz) 3.7 Acoustic dissipation rate

µ (2π MHz) 1 Acoustic coupling rate

V+ (0.48)1/2 Asymmetry parameter

G
(emit)
B (W−1m−1) 1300 ‘Emit’ Brillouin gain

G
(rec)
B (W−1m−1) 915 ‘Receive’ Brillouin gain

L (mm) 5 Brillouin interaction length

Vπ (V) 6.94 Half-wave voltage

η2Rout|Hpd|2 (W−1) 4.6 Calibrated detector response

Rin (Ω) 50 Iinput impedance

PRF
in (dBm) 10.1 Input RF power

Nbg (dBm/Hz) −139.1 Background noise

at the input of the system (before the noisy elements), typically at the expense of dynamic

range. To demonstrate this, an RF low-noise amplifier (MiniCircuits ZX60-V63+) was

added before the modulator at the link input (see Fig. 7.1(a)). Fig. 7.2(e) shows how the

addition of the low-noise amplifier (LNA) boosts a signal by 18 dB, without changing the

noise floor of the link, which is still Brillouin-noise dominated. The RF power measurements

were repeated, seen in Fig. 7.2(d), yielding a link gain of G = 0.6 dB and a noise figure of NF

= 39.2 dB. We can see that the full amount of gain provided by the amplifier contributes

to the reduction of the noise figure. The linear dynamic range is practically unchanged

by the LNA, however, the measured spurious-free dynamic range is reduced, showing a

trade-off between noise-figure and dynamic range, which is a common situation in many

microwave-photonic links [265]. A summary of the measured link parameters with the LNA

is presented in Table 7.1.
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7.4 Bandpass tunability

In many practical microwave-photonic systems, we are interested in processing multiple

frequency bands, requiring filters with different pass-band frequencies. This can be achieved

by using multiple devices with geometries designed to filter different frequencies, as was

demonstrated in Chapter 6. However, a more economical approach is to design a scheme

that enables the tuning of the pass-band of a given PPER-based filter. Such tunability

can be achieved by using a modified modulation scheme at the PPER ‘emit’ signal path,

illustrated schematically in Fig. 7.3(a). To implement this, the input RF signal is first

encoded onto the optical carrier using a phase modulator. Because phonons are generated

by intensity modulation of light, this phase-modulated optical carrier alone does not drive

a phonon field. To convert the phase-modulated sidebands into an intensity beat note that

can be used to transduce acoustic waves, we introduce a second optical tone, used as an

optical local oscillator (LO). The pass-band is set by the Brillouin frequency (Ω0) and the

LO frequency (ωLO), which we use to select the spectral band that is transduced to the

acoustic field. It is important to note that the acoustic field is driven around the Brillouin

frequency Ω0, regardless of the LO setting. The optical tone in the ‘receive’ waveguide is

phase modulated by the driven acoustic field, and after demodulation and detection, the

output RF signal has a power proportional to the input RF signal at the filtered frequency.

Fig. 7.3(a) illustrates how tuning the LO frequency relative to the signal, seen in panels

(1–3), changes the signal power at the filter output, seen in panels (4–6), respectively.

Alternatively, this tuning scheme can be understood as a series of mixing and filtering

operations, as illustrated in Fig. 7.3(b,c). In this analogy, the tuning of the LO frequency

shifts the input signal relative to a static filter —set at the Brillouin frequency— and the

demodulation and detection of the light at the PPER output perform a down-conversion

from the optical domain to the Brillouin frequency.

Tunable PPER-based filtering is demonstrated using the experimental setup illustrated

in Fig. 7.4(a). The RF input signal is modulated on an optical carrier with optical frequency

ω1 using a phase modulator (Thorlabs LN65S-FC). The optical LO was synthesized from the
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same laser source, using an intensity modulator and an optical filter, yielding a single tone at

optical frequency ωLO = ω1 + ΩLO. The two optical fields were combined and directed into

the ‘emit’ waveguide of the PPER device, while a second optical tone at frequency ω2 was

injected into the ‘receive’ waveguide. The light from the ‘receive’ output was demodulated

using a commercial optical filter, detected using a photodetector, and measured using an RF

spectrum analyzer. The device used for this demonstration has an active-Brillouin length

of L = 3 mm, and a phononic crystal structure with pitch a = 600 nm and hole diameter

d = 462 nm, yielding a resonant acoustic frequency of Ω0 = 3.90 GHz and a 3 dB linewidth

of 6.2 MHz.
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Figure 7.3: (a) Schematic illustration of a tunable PPER-based filter, where the LO fre-
quency determines the spectral band of the input signal that drives the narrowband Brillouin
process (illustrated in blue). The output of the filter is centered around the Brillouin fre-
quency Ω0, with power proportional to the signal at the filtered frequency. Panels (1,2,3)
show the LO tuned to different frequencies, and the corresponding output power in panels
(4,5,6). (b) The PPER-based tunable filter described in terms of mixing operations and a
static filter at the Brillouin frequency. (c) A simplified equivalent circuit in the RF domain,
after removing the optical carrier ω1 at the input of the filter (ΩLO = ωLO−ω1), and ω2 at
the output. Adapted from Ref. [156].
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First, we demonstrate the function of this high-resolution filter by using it to filter a

complex RF signal, operating in essence as a spectrum analyzer, as illustrated schematically

in Fig. 7.4(b). In this scenario, a wideband input RF signal is injected into the filter input.

The LO frequency is tuned such that the filter pass-band sweeps across the bandwidth of

the input signal. For each LO frequency, the output RF signal power is proportional to the

input signal at the filtered frequency. The resulting output RF power as a function of the
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Figure 7.4: (a) Experimental setup used to demonstrate filter pass-band tunability. PM:
phase modulator, IM: intensity modulator, FBG: fiber-Bragg-grating filter, CIRC: circu-
lator, EDFA: optical amplifier, PC: polarization controller, BPF: optical bandpass filter,
RFSA: RF spectrum analyzer. (b) Schematic illustration of the filter used as a spectrum
analyzer. The input signal consists of an array of RF tones (red). By tuning the LO fre-
quency, the two-pole filter pass-band (purple) is swept across the input signal, producing
the output RF signal (blue). (c) Measurement corresponding to the scheme presented in
panel (b). The input signal consists of RF tones spaced by 60 MHz. The PPER out-
put reproduces the input, and the resolution is determined by the acoustic lineshape. (d)
Schematic illustration of the demonstration of wideband tunability. The input signal (red)
is set at Ω1, and the LO (purple) is swept to yield the output signal (blue). The input tone
is shifted to different frequencies (Ω2 . . .ΩN ) and the LO tuning is repeated at each step.
(e) Measurements corresponding to the scheme presented in panel (d), demonstrating the
tuning of the filter pass-band over 6 GHz. Reproduced from Ref. [156].
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LO frequency is a convolution of the input signal with the two-pole filter lineshape. Fig.

7.4(c) shows a measurement demonstrating such a spectrum analyzer scheme. The input

RF signal consists of a comb of tones separated by 60 MHz, centered around 5 GHz. The

measured output RF power reproduces the input signal, and the spectral resolution is given

by the lineshape of the acoustic mode. The noise floor of this measurement (SNR = 29 dB)

was determined by the 100 MHz measurement bandwidth.

When processing wideband microwave signals, large-span filter tunability is an impor-

tant feature of microwave-photonic systems. The photonic platform enables the design of

systems that can operate over large bandwidths, which would be challenging to implement

using microwave components alone. We demonstrate the wideband tunability possible with

the PPER-based filter by shifting the pass-band over a spectral range spanning multiple-

GHz. The measurement scheme is illustrated schematically in Fig. 7.4(d). An input signal

is set at RF frequency Ω1, and the LO sweeps the filter pass-band such that the output

power reproduces the signal at the output. To demonstrate that this tunability can be

reproduced at any number of frequencies over a wide range, we shift the frequency of the

input signal to frequency Ω2, and the LO tuning is repeated. This process is performed for

multiple input frequencies, spanning a large frequency range, demonstrating the wide-band

tunability of the filter. Experimentally, we set the input RF signal at frequencies between

ΩRF = 4–10 GHz (limited by the bandwidth of the phase modulator used in the experi-

ment). For each input frequency, the filter pass-band swept a range of 250 MHz. Fig. 7.4(e)

presents the aggregated measurements, showing the pass-band tuned over a 6 GHz range

without changing its narrow-band multi-pole lineshape.

7.4.1 Bandwidth limitations

When considering the use of tunable PPER-based systems for practical applications it is

important to analyze the bandwidth limitations of the system, namely the bandwidth over

which we can expect distortion-free operation. Here, we expand on this point, starting our

analysis by noting that the forward Brillouin scattering process used in the PPER-based

filtering scheme is inherently double-sided, such that the Stokes (red-shifted) and anti-
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Stokes (blue-shifted) processes are coupled, as was discussed in Chapter 2. In the static

filter case (Fig. 7.1(a)) this results in the carrier beating with both sidebands in the ‘emit’

waveguide. However, in the frequency-tuning scheme presented here, this results in the

optical local oscillator (LO) driving the acoustic field by beating with light spaced by the

Brillouin frequency at both higher (ωLO + Ω0) and lower (ωLO − Ω0) frequencies. Fig. 7.5

illustrates the two sidebands (blue) where forward Brillouin scattering can occur around the

LO (purple). The dual-sideband nature of the process is equivalent to an image frequency

in heterodyne detection, where unwanted frequency components interfere with the desired

signal [288]. As long as the input RF signal bandwidth ∆RF is smaller than twice the

Brillouin frequency ∆RF < 2Ω0, there will not be distortion in the filter operation. As

shown in Fig. 7.5(a), when tuning the LO, only the lower ‘LO sideband’ overlaps with the

modulated information. It is important to note that this RF bandwidth corresponds to the

spectral content of the signal, i.e., ∆RF = max(ΩRF) −min(ΩRF), and does not constrain

the highest frequency at the filter input.

In contrast, when the input signal bandwidth limitation is not satisfied, such that

∆RF > 2Ω0, the measured output signal will not always be proportional to the filtered

input RF signal. This is illustrated in Fig. 7.5(b), showing that as the LO approaches the

center of the RF sideband it drives the acoustic field through two scattering processes whose

contributions will be summed. This distortion can be avoided by using an image-rejection

filter, common in many homodyne RF receiver schemes [288], ensuring single-sideband fil-

tering. Alternatively, this bandwidth limitation can be lifted by using inter-modal Brillouin

scattering that is inherently a single-sideband process [65, 139], which will be discussed

further in Chapter 9.

We note that throughout this discussion we are assuming the small-signal regime, such

that the RF-modulation sidebands are much smaller than the optical carrier and the local

oscillator. This enables us to neglect the beat note generated between different spectral

components within and between the RF sidebands, as their contribution will be much

smaller than that of the beat note generated by the strong LO.
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Figure 7.5: Tuning of the optical local oscillator (LO) across the RF-modulated sideband
enables the filtering of different spectral bands. (a) When the total bandwidth of the RF
sideband is smaller than twice the Brillouin frequency (∆RF < 2Ω0), there is no overlap of
the higher LO sideband with the RF-modulated signal, and the filter output corresponds
to the transfer function of the acoustic mode with no distortion. (b) If the bandwidth
limitation is not satisfied (∆RF > 2Ω0), as we tune the pass-band of the filter, both sidebands
of the LO can overlap with the RF signal (panel (iii)), yielding distortion at the filter output,
equivalent to image-frequency interference. Reproduced from Ref. [156].

7.4.2 Alternative tuning schemes

Up to this point, we have discussed the use of both static and tunable PPER-based filters

for spectral analysis, which result in the conversion of the output RF signal to be centered

around the Brillouin frequency, summarized in Fig. 7.6. This downconversion can be

advantageous in systems where frequency conversion is necessary, simplifying system design

by performing both operations. However, in some applications, where the filter is part of

a larger microwave-photonic system, complementary strategies could be needed, in which

we can control the frequency of the output RF signal. Such control can be achieved by

employing optical heterodyne demodulation at the output of the PPER device, as illustrated

in Fig. 7.7(a). By using an optical tone at frequency ωDM for demodulation, the resulting

RF signal is at frequency Ωout = ωDM − ω2 − Ω0, which can be determined by tuning ωDM



CHAPTER 7 180

and ω2.

Additionally, microwave-photonic filters could be utilized in place of microwave filters

(which can operate at arbitrarily-high frequencies), where the output microwave frequency

is not changed compared to the input frequency. Such frequency-neutral tunable filtering

can be achieved in PPER-based systems by using an alternative demodulation scheme, in

which the optical local oscillator that is used to tune the filter pass-band is also utilized to

perform heterodyne detection. This demodulation scheme results in an output microwave

frequency that follows the filtered input microwave signal, as illustrated in Fig. 7.7(b).

The input into the microwave-photonic link is the same as in the tunable frequency-shifting

b

PM

DEMOD

Ω ω

ω

ω

Ω

ω

ω

a

DEMOD

IM

Ω

ω

ω

ω

Static filter

Tunable, frequency shifting filter

Ω

Emit

Receive

Emit

Receive

Figure 7.6: (a) Schematic illustration of a PPER-based microwave-photonic filter with a
set frequency Ω0, determined by the device geometry. (b) By adding a frequency-tunable
optical local oscillator (LO) at the link input, the filter pass-band Ωfilt can be shifted,
however, the output RF signal is still around the Brillouin frequency.
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Figure 7.7: (a) Optical heterodyne demodulation, using an optical tone at frequency ωDM,
shifts the output RF signal to Ωout = ωDM − ω2 − Ω0. (b) Using the LO to perform
heterodyne detection at the link output and setting the ‘emit’ and ‘receive’ tones to the
same frequency (ω2 = ω1) yields a frequency neutral filter, where the output RF signal is
at the same frequency as the filter pass-band. Reproduced from Ref. [156].

case, such that a pass-band centered around Ωfilt = ωLO−ω1−Ω0 yields phase modulation

at the Brillouin frequency Ω0. By combining the phase-modulated ‘receive’ tone with the

LO, a beat note is produced, yielding an RF signal after detection. In the example from

Fig. 7.7(b), the output RF tone will have frequency Ωout = ωLO − ω2 − Ω0, where ω2 is

the ‘receive’ optical carrier. By setting ω2 = ω1, i.e., using the same optical frequency in

the ‘emit’ and ‘receive’ waveguides, we obtain a frequency neutral filter, where Ωout = Ωfilt.

Similarly, a constant offset can be chosen, when ω2 6= ω1.
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7.5 Conclusion

In this chapter, we have presented a PPER-based multi-pole microwave-photonic filter, and

studied its frequency response and performance within an RF link, showing an improvement

of two orders of magnitude in the resolution of silicon-photonic multi-pole filters. We have

also demonstrated how a PPER-based filter can be tuned over a wide spectral range, for

the first time. The device yields a narrow pass-band and excellent out-of-band suppression,

surpassing the performance of available silicon-photonic technologies [52], as well as other

integrated microwave-photonic demonstrations, as seen in Fig. 7.8. Additionally, the de-

vice is fabricated in a standard silicon platform, using well-established CMOS-compatible

fabrication techniques.

The RF link performance demonstrated using the silicon PPER device is competitive

with other microwave-photonic schemes [196], such as ring-resonators [309], interferometers

[310], Brillouin-based filtering [35, 144], and pulse shaping [311]. The spatial separation of

‘emit’ and ‘receive’ waveguides reduces the effects of optical nonlinearities such as four-wave

mixing, which can be detrimental to the filter performance. Additionally, the use of forward

Brillouin scattering in the filtering process reduces the effects of unwanted reflections and

eliminates the use of circulators and isolators which are challenging to integrate on-chip.

20

40

60

R
e

je
c�

o
n

 (
d

B
)

10
-3

10
-2

10
-1

10
0

10
1

10
2

FWHM (GHz)

Bandpass filters
Brillouin
Rings/MZI
Comb
Incoherent
This work

Figure 7.8: Summary of recently demonstrated integrated microwave-photonic bandpass
filters, showing out-of-band rejection and spectral resolution (FWHM: full-width at half-
maximum). Surveyed work includes Brillouin-based filtering [144,187,247,251], filters using
ring resonators and interferometers [52, 227, 287, 289–295, 295–301], comb-generation and
spectral shaping [302–306], and incoherent multi-tap filters [307,308].
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The PPER-based filtering scheme utilizes the optical, microwave, and acoustic domains

—each with vastly different and complementary properties— which can all be optimized

for further improvement of the device performance, as was discussed in Chapter 5. Longer

devices will result in higher gain, lower noise figure, and a larger dynamic range. For

example, by using a PPER device with an active length of 5 cm (while preserving the

acoustic lineshape) the link gain will increase by 20 dB, and the noise figure will be reduced

by 10 dB compared to the results shown in this work, which were obtained from a 5 mm

long device. Higher optical power in the ‘emit’ waveguide will yield a higher link gain,

without adding noise in the process. Dispersion engineering of the optical waveguides can

enable stronger Brillouin coupling [169], resulting in a larger spur-free dynamic range and

lower noise figure. Additionally, an interferometric phase demodulation scheme will result

in a higher link gain [198]. In the acoustic domain, stronger acousto-optic coupling can be

achieved by longer-lived acoustic modes, which will also result in a narrower filter lineshape.

For example, this can be accomplished by optimizing the phononic crystal design, achieving

a complete acoustic band-gap [312]. Improvement of the phononic crystal can also yield a

wider acoustic stop-band [313], decreasing signal distortion and averting the need for further

filtering.

In the microwave domain, using improved electro-optic modulators will directly enhance

the performance of the link. In the scheme we have demonstrated, the third-order spurious

tone is a result of the nonlinerity of the intensity modulator at the filter input, and using

linearized modulation schemes [198, 201] will yield a larger dynamic range. Furthermore,

modulators with a lower half-wave voltage [53] will result in a lower noise figure. For

instance, by using a modulator with a half-wave voltage of 1 V, a 5 cm long device could

yield a link gain of 26 dB and a noise figure of 30 dB (see Section 5.4). Alternatively, a

microwave low-noise amplifier (LNA) can be used at the input to the modulator, yielding

a lower noise figure, as we have demonstrated here.

With the advancement of integrated silicon light sources [56, 259], amplifiers [54, 187],

modulators [314] and detectors [49], PPER-based filtering schemes can be a step towards

foundry-compatible, fully integrated microwave-photonic systems.



Chapter 8

Narrowband microwave-photonic

notch filtering

8.1 Introduction

In the previous chapters, we have shown how the nonlocal nature of forward Brillouin inter-

actions can be used to design photonic-phononic emit-receive (PPER) devices, which can

be used in microwave-photonic filtering operations. Experimentally, we have demonstrated

narrowband, tunable microwave-photonic bandpass filters in a silicon platform, with ∼MHz

spectral resolution. In this chapter, we will show how PPER devices can also be used to

implement notch-filtering operations, strongly suppressing a narrow spectral band of a mi-

crowave signal. Notch filters are an important building block in many microwave systems.

For example, in the case of an interfering signal within the operation bandwidth of an RF

system, a notch filter is needed to suppress the interferer with minimum distortion to the

signal, as illustrated in Fig. 8.1. The interfering signal may be a result of other components

in the system, such as RF local oscillators used for signal processing, or external narrow-

band noise sources. When the interfering tone is close in frequency to a signal of interest, a

narrowband notch filter is required, such that the signal is minimally affected in the filtering

process.

184
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Input signal Output signal

Filter gain

Notch filter

Interfering signal

suppressed

Figure 8.1: An example of a spectrum showing a signal at frequency Ωsig and an unwanted
interfering tone at frequency Ωint. By passing the signal through a notch filter, the inter-
fering signal can be suppressed before detection or further signal processing.

In this context, microwave-photonic notch filters are attractive for their ability to be

tuned over large frequency ranges and their immunity to electromagnetic interference.

Microwave-photonic notch filters have been demonstrated using optical fiber, utilizing de-

lay lines [315] and Bragg gratings [316]. For narrowband applications, Brillouin scatter-

ing [317, 318] and Brillouin dynamic gratings [99, 100] have been used to produce narrow-

band filters, thanks to the unique properties of the acoustic waves taking part in the filtering

process. In chip-integrated systems, microwave-photonic filtering has been demonstrated

using micro-ring resonators [221, 309, 319, 320], which are typically limited in their abil-

ity to produce a narrow spectral response [209] and require ultralow-loss waveguides to

achieve ∼MHz spectral features [223, 254]. Other chip-scale narrowband photonic filter-

ing demonstrations have included whispering-gallery modes in microspheres [321] and gas

absorption [322], however, the integration of such devices may be challenging.

Alternatively, Brillouin scattering has been a promising strategy to achieve narrowband

filtering in integrated-photonic platforms, similar to its use in optical fiber [35,41,64]. The

long lifetime of the acoustic modes participating in the interaction produces narrow spectral

features, which can be used to synthesize microwave-photonic filters, analogous to the role

played by SAW and BAW devices in RF signal processing [140]. Specifically, Brillouin-based

notch filtering has been demonstrated by utilizing Brillouin-induced loss or gain to shape

the spectrum of optical sidebands which encode an RF signal in the optical domain. In

order to implement notch filtering operations, advanced modulation schemes are necessary
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to translate the shaped optical spectrum into a filtered microwave signal [240, 246, 247], as

was discussed in Chapter 4 (see Fig. 4.10).

We have seen in previous chapters that an alternative intriguing method for utilizing

Brillouin interactions is by using a photonic-phononic emitter-receiver (PPER) [186]. In this

scheme, we use forward Brillouin scattering to transduce information between two spatially

separated waveguides, resulting in a narrow bandpass frequency response set by the acoustic

modes.

Here, we will demonstrate how a PPER process can be used to produce flexible nar-

rowband notch-filtering operations, offering new design degrees of freedom relative to prior

Brillouin-based microwave-photonic filters. The filtering scheme is based on the destructive

interference of the input signal with the narrowband output of a PPER device, achieving

notch filters with a bandwidth of 3 MHz and 60 dB of signal rejection. Additionally, we show

how single-pole filters, as well as two-pole filters, can be achieved using this strategy. Such

narrowband response enables the suppression of an interfering signal, without degrading

information encoded on an optical carrier only a few MHz away, as we demonstrate experi-

mentally. Furthermore, we show how the notch frequency can be shifted over multiple GHz

by using an optical local oscillator at the filter input. Importantly, the narrowband (∼MHz)

resolution of the notch filter does not degrade when tuning it over a wide frequency range.

We characterize a full microwave-photonic link implementing a PPER-based filter, demon-

strating a link gain of −3.6 dB. These results are competitive with other microwave-photonic

filtering schemes [209], showing the feasibility of these filters to be integrated within larger

microwave-photonic systems. Moreover, the devices used in this work are fabricated in a

standard silicon-on-insulator (SOI) platform, using well-established fabrication methods,

opening the door to wafer-scale integration of additional system components on the same

platform.
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8.2 Operation scheme

The notch-filtering operation in our scheme is achieved through the design of an interferom-

eter, in which a narrow bandpass filter is implemented on one of the interferometer paths,

illustrated schematically in Fig. 8.2(a). By adjusting the delay (τ) between the two signal

paths, such that they are out of phase, the signals destructively interfere at a frequency set

by the bandpass filter, resulting in a notch frequency response, shown in Figs. 8.2(b–e).

In this way, the frequency response of the bandpass filter is effectively inverted to achieve

the desired notch filter response. In the filter presented here, a PPER device is used to

implement the bandpass operation within the interferometer, resulting in ∼MHz spectral

resolution.

Next, we describe how the interferometric scheme utilizing a PPER device, as illustrated

in Fig. 8.3, yields a microwave-photonic notch-filtering operation. First, the input RF signal

is encoded on an optical carrier with frequency ω1 using an intensity modulator, yielding a

field amplitude given by [198]

EIM(t) =

√
P̃ (A)

2
e−iω1t

(
eiθ +

∑
n

Jn

(
πVin

Vπ

)
e−inΩt

)
. (8.1)

Here, P̃ (A) denotes the optical power, the input voltage Vin oscillates at frequency Ω, and

the half-wave voltage of the modulator is denoted Vπ. The angle θ is determined by the

biasing point of the modulator, and for the rest of our analysis, we will assume that it is

biased at quadrature (i.e., θ = π/2). The field is split using a directional coupler, and one

branch is directed into the ‘emit’ waveguide of a PPER device, while the other bypasses

the device completely, and is directed to a photodetector. A separate laser source with

frequency ω2 is used for the ‘receive’ path of the PPER, and as we have derived in Chapter

5, at the output of the PPER this results in a phase-modulated signal

EPPER(t) =
√
P̃ (B) e−iω2t eiβin cos(Ωt−φ). (8.2)
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Figure 8.2: (a) Operation scheme of the notch-filter. The signal is split into two paths, and
one of the paths is bandpass filtered. By setting the appropriate time-delay τ , the signals
from the two interferometer paths are out of phase, and a notch filter frequency response
is obtained. (b) Calculated frequency response of the notch filter scheme, for the case of
a single-pole filter, showing different values of time-delay between the two interferometer
paths. (c) Equivalent calculation for the case of a two-pole filter. (d) Calculated frequency
response for different cases of power difference between the two interfering signals. To
achieve perfect signal cancellation, the two signals need to be power balanced, i.e., ∆P = 0.
(e) Equivalent calculation for the case of a two-pole filter.

Here, P̃ (B) is the ‘receive’ optical power, and the modulation index is given by

βin = GBP
(E)LJ1

(
πVin

Vπ

)
Γ

2
|χ(Ω)| , (8.3)

where GB is the Brillouin gain, P (E) is the optical power in the ‘emit’ waveguide, L the

length of the active region of the device, and Jn(·) is an nth order Bessel function. Above,

the phonon lifetime is given by Γ, χ(Ω) is the acoustic frequency response, and we have

denoted the phase φ(Ω) = arg(χ(Ω)). Using the Jacobi-Anger expansion, Eq. (8.2) can also
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be expressed as

EPPER(t) =
√
P̃ (B) e−iω2t

∑
n

i−nJ−n (βin) e−in(Ωt−φ). (8.4)

The phase of the optical field from Eq. (8.4) is demodulated using an optical filter (see

Section 5.4.6), such that we are left with an optical carrier and a single sideband

E
PPER

(t) =
√
P̃ (B)e−iω2t

(
J0 (βin) + iJ1 (βin) e−i(Ωt−φ)

)
. (8.5)

In our analysis, we have assumed that the demodulation is performed using an ideal filter,

such that there is no attenuation for the transmitted carrier and sideband, while all other

optical sidebands are completely suppressed.

The demodulated PPER output field is directed to the photodetector, such that the

PC

RFSA

EDFA

PC

BPF

PPER outputIntensity mod.

ω

π phase

VOA ODL

PPER Ω
IM

Ω

ω ω

ω

Laser 1

Laser 2

EDFA

Figure 8.3: Schematic illustration of the experimental setup used to demonstrate PPER-
based notch filtering. An RF tone is modulated onto an optical carrier using an intensity
modulator (IM) and is split into two paths. One is directed into the ‘emit’ port of the
PPER device, while the other is combined with the output of the PPER. A separate optical
wave propagates in the ‘receive’ waveguide. BPF: bandpass filter, VOA: variable optical
attenuator, ODL: optical delay line, EDFA: erbium-doped fiber amplifier, PC: polarization
controller, RFSA: RF spectrum analyzer.
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total detected field is given by

E(t) =

√
P (A)

2
e−iω1(t−τ (A))

(
i+
∑
n

Jn

(
πVin

Vπ

)
e−inΩ(t−τ (A))

)
+ i
√
P (B)e−iω2(t−τ (B))

(
J0 (βin) + iJ1 (βin) e−i(Ω(t−τ (B))−φ)

)
,

(8.6)

where the first line represents the optical field amplitude from the intensity modulator

(bypassing the PPER device) and the second line is the demodulated PPER output. Here,

τ (A), τ (B) are the time delays experienced by the fields in each of the optical paths. The

relation between {P̃ (A), P̃ (B)} and {P (A), P (B)} is determined by the splitting ratio of the

directional coupler used before detection (for example, a 50:50 coupler would yield P (A) =

P̃ (A)/2 and P (B) = P̃ (B)/2), and the factor i is a result of the phase imparted in the

directional coupling. The photocurrent at the detector is given by I = ηP , where η is

the detector responsivity, and the fields are normalized such that P = |E|2. Isolating the

current oscillating at frequency Ω, we are left with

I(Ω)(t) = 2η

[
P (B)J0 (βin) J1 (βin) sin

(
Ω
(
t− τ (B)

)
− φ

)
− P (A)J1

(
πVin

Vπ

)
sin
(

Ω
(
t− τ (A)

))]
.

(8.7)

We note that the two optical wavelengths from the two lasers are chosen such that the beat

note between the carriers is well beyond the detector bandwidth, and does not contribute

to the RF signal. This is easily implemented, as a difference as small as ∆λ = 1 nm

(∆λ = |2πc/ω1 − 2πc/ω2|) corresponds to ∆ω/(2π) ≈ 125 GHz (∆ω = |ω1 − ω2|), well

beyond the bandwidth of typical detectors.

In the small-signal limit, when Vin � Vπ, we can expand the Bessel functions to first

order (J0(x) ≈ 1, J1(x) ≈ x/2), and ignoring an overall phase, this leaves us with the RF

signal

I(Ω)(t) = η

(
πVin

Vπ

)[
P (A) sin

(
Ωt
)
−
(

1

2
P (B)GBP

(E)L
Γ

2
|χ(Ω)|

)
sin
(
Ωt+ Ω∆τ − φ

)]
,

(8.8)
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where we have substituted βin from Eq. (8.3), and denoted the time difference between the

two optical paths as ∆τ = τ (A) − τ (B). Rearranging this expression, we arrive at

I(Ω)(t) = η

(
πVin

Vπ

)
Im

[
e−iΩt

(
P (A) − 1

2
P (B)GBP

(E)L
Γ

2
|χ(Ω)| e−i(Ω∆τ−φ)

)]
. (8.9)

We note that P (A) and P (B) are the optical power on the detector from the unfiltered

interferometer path, and the PPER path, respectively, while P (E) represents the optical

power in the ‘emit’ waveguide of the PPER device. From Eq. (8.9) we can see how

complete cancellation of the RF signal can be achieved at the Brillouin frequency Ω0 by

setting the power (P (A)) and time delay (∆τ) such that P (A) = P (B)GBP
(E)LΓ|χ(Ω0)|/4

and Ω0∆τ = φ(Ω0) + 2πm (where m is an integer). These conditions are dependent on the

frequency response of the PPER device χ(Ω), as were discussed in Chapter 3.

We begin by examining the case of a single-pole PPER response, given by

χ(Ω) =
1

i(Ω0 − Ω) + Γ/2
, (8.10)

such that at the Brillouin frequency (Ω0) we have

|χ(Ω0)| = 2

Γ
, φ(Ω0) = 0. (8.11)

From Eq. (8.9) we see that in order of achieve signal cancellation at Ω0 we need to set

P (A) = P (B)GBP
(E)L/2 and ∆τ = 2πm/Ω0, yielding

I(Ω)(t) = η

(
πVin

Vπ

)(
1

2
P (B)GBP

(E)L

)
Im

[
e−iΩt

(
1− Γ

2
χ(Ω)e−i(2πmΩ/Ω0)

)
︸ ︷︷ ︸

ξ(Ω)

]
. (8.12)

Here, we have denoted the frequency response of the notch filter ξ(Ω).

In the case of a two-pole PPER device, the frequency response from Eq. (8.9) is replaced

with

χ(2-pole)(Ω) =
1/2

i(Ω0 − µ− Ω) + Γ/2
− 1/2

i(Ω0 + µ− Ω) + Γ/2
, (8.13)
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where µ is the coupling rate between the two acoustic modes participating in the filtering

process, and at the Brillouin frequency we have

∣∣∣χ(2-pole)(Ω0)
∣∣∣ =

µ

µ2 + (Γ/2)2 , φ(2-pole)(Ω0) =
π

2
+ arg (µ)− arg

(
µ2 + (Γ/2)2

)
. (8.14)

For this analysis we will assume µ = Γ/2, where signal cancellation at the notch fre-

quency requires setting the optical power (P (A)) and the time delay (∆τ) such that P (A) =

P (B)GBP
(E)L/4 and ∆τ = (π/2 + 2πm)/Ω0. Substituting these parameters into Eq. (8.9)

yields

I(Ω)(t) = η

(
πVin

Vπ

)(
1

4
P (B)GBP

(E)L

)
× Im

[
e−iΩt

(
1− Γ

2
χ(2-pole)(Ω)e−i

[
(π/2+2πm)(Ω/Ω0)

])
︸ ︷︷ ︸

ξ(2-pole)(Ω)

]
,

(8.15)

where we have identified the frequency response of the two-pole notch filter ξ(2-pole)(Ω),

showing signal suppression at Ω = Ω0.

Finally, we analyze the DC photocurrent at the detector, which is important for design-

ing practical systems that have power-handling limitations, and for estimating the noise

floor of the microwave-photonic link. Calculating the DC terms of the photocurrent, we

have

I(DC) = η

(
P (A) + P (B)

[
J2

0 (βin) + J2
1 (βin)

])
≈ η

(
P (A) + P (B)

)
, (8.16)

where in the last step used a small-signal approximation, consistent with our earlier analysis.

8.3 Experimental demonstration

The first PPER device used to demonstrate narrowband notch filtering was fabricated

at the Sandia National Laboratories1 MESA facilities using a standard SOI process and

1. Sandia National Laboratories is a multi-program laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly-owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA-0003525. This dissertation describes objective technical results and analysis. Any subjective views or
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Figure 8.4: (a) Top-down micrograph of a PPER device, showing the two ridge waveguides,
and the slots used to suspend the device and confine the acoustic modes. (b) Illustration of
the silicon-on-insulator PPER device cross section. (c) Artistic illustration of the suspended
device. (d) Top: Measured frequency response of the PPER device, showing multiple acous-
tic modes. Bottom: The corresponding notch filter frequency response. Inset: Magnified
view of the pass-band ripple. (e) Magnified view of the frequency response around 4.32
GHz. Top: PPER band-pass response. Bottom: Corresponding notch filter response.

patterned with stepper photolithography. As shown in Figs. 8.4(a–c), the active region of

the device consists of two ridge-waveguides, which are suspended by removing the oxide

under-cladding, with an active length L = 1.48 mm. Each of the rib waveguides supports a

TE-like optical mode, while the suspended region supports high-Q acoustic modes, which

are confined laterally using etched slots in the silicon layer. The overlap of the optical and

acoustic fields in the device results in strong forward Brillouin coupling (more details about

the device design can be found in Ref. [187]). All measurements were conducted at telecom

wavelengths, and light was coupled on and off the chip using integrated grating couplers.

opinions that might be expressed in this work do not necessarily represent the views of the U.S. Department
of Energy, or the United States Government.
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The frequency response of the filter is measured using the experimental setup illustrated

schematically in Fig. 8.3, by sweeping an RF tone Ω at the input to the intensity modulator

and measuring the output RF power at the same frequency. The PPER alone produces a

bandpass filter response, revealing multiple acoustic resonances (determined by the device

geometry [44]), as shown in the top panel Fig. 8.4(d). Focusing on the resonance at

Ω0/(2π) = 4.32 GHz, we see that the acoustic response has a Lorentzian lineshape with

a full-width at half-maximum (FWHM) of 2.4 MHz, seen in the top panel of Fig. 8.4(e),

corresponding to a Q-factor of Q = 1722.

To achieve a notch filter response, we utilize the interferometric scheme described earlier,

and tune the optical power and delay to cancel the signal at Ω0, achieving signal suppression

of 47 dB at the notch frequency. Outside the filtered notch, the frequency response is flat

over a span of 1.6 GHz, as seen in Figs. 8.4(d,e). Using a vector network analyzer (VNA),

we measure the phase response of the filter, seen in Fig. 8.5, showing a flat response with

a π phase discontinuity at the notch frequency, consistent with theory, and demonstrating

that the PPER-based filtering scheme does not degrade the fidelity of RF signals traversing

the system.

In our experimental demonstrations, the interferometer was balanced using a variable

optical delay line and a variable optical attenuator (VOA), with no active stabilization.

Fluctuations in the phase and polarization of the fields in the interferometer set a limit

to the suppression we could demonstrate, and active stabilization could enhance the per-

formance of the filter. It is important to note, that many of the components utilized in

the laboratory proof-of-concept presented here would not be necessary when integrated on-

chip. Additionally, a chip-integrated system would result in a higher level of stability and

high-performance filtering.

When analyzing a wider frequency range of the notch filter, the effect of spurious acoustic

modes can be seen, yielding pass-band ripple on the order of ∼3 dB, as seen in the inset of

the bottom panel of Fig. 8.4(d). These spectral features correspond to acoustic resonances

which are not perfectly balanced in the interferometric scheme, such that the signal is

distorted. In certain applications, the distortion can hinder filter operation and a ripple-
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Figure 8.5: (a) Measurements of the frequency response of a single-pole PPER-based fil-
ter, top: magnitude, bottom: phase. (b) Measurements of the corresponding notch filter
response. The theoretical trends follow Eqs. (8.10) and (8.12).

free pass-band is required. This can be achieved through phononic-band engineering, as we

proceed to demonstrate.

8.3.1 Ripple suppression

Next, we use a different PPER device, which has phononic crystal regions in place of

the slots, designed to provide acoustic confinement while suppressing spurious acoustic

modes, removing the distortion in the notch filter pass-band. One such device is shown

in Figs. 8.6(a–c), where the phononic crystal region —a cubic lattice of air holes with a

pitch a = 0.6 µm and hole diameter d = 0.5 µm— result in a phononic stop-band over a

∼2 GHz spectral range, as was discussed in Chapter 6. The phononic crystal devices were

fabricated with standard electron-beam lithography, as was detailed in 6.6. When utilizing

a phononic crystal to confine acoustic modes, phonon modes with frequencies outside the

acoustic stop-band readily pass through the phononic crystal regions, resulting in low-Q

modes and weak acousto-optic interaction. The PPER frequency response is seen in Fig.
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Figure 8.6: (a) Top-down micrograph of a PPER device, utilizing a phononic crystal struc-
ture. (b) Illustration of the device cross section. (c) Artistic illustration of the suspended
device. (d) Top: Measured frequency response of the PPER device. Bottom: Corre-
sponding notch filter frequency response. Inset: Magnified view of pass-band ripple. (e)
Magnified view of the frequency response around 4.3 GHz. Top: PPER band-pass response.
Bottom: Corresponding notch filter response.

8.6(d), showing a sharp peak at Ω0/(2π) = 4.3 GHz (within the acoustic stop-band), while

acoustic modes outside this region are suppressed by more than 20 dB. When used as a

notch filter, we can see that the distortions in the pass-band are reduced, and over an 8

GHz range, the filter pass-band is flat to within 1 dB. At the notch frequency Ω0, the filter

shows signal suppression of 57 dB (see Fig. 8.6(e)). This demonstration shows how acoustic

mode engineering is a powerful tool to shape the PPER-based notch filter response.

8.3.2 Second-order filtering

The modularity of the notch filtering scheme enables us to use different PPER devices

in the filtering process, as we have just shown. Now, we proceed to demonstrate the
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Figure 8.7: (a) Top-down micrograph of a two-pole PPER device, utilizing a phononic
crystal structure. (b) Illustration of the device cross section. (c) Artistic illustration
of the suspended device. (d) Top: Measured frequency response of the PPER device.
Bottom: Corresponding notch filter frequency response. Inset: Magnified view of pass-
band distortion. (e) Magnified view of the frequency response around 4.2 GHz. Top:
PPER band-pass response. Bottom: Corresponding notch filter response.

use of a two-pole PPER device, such as was described in Chapter 6, within the notch-

filtering scheme. The device used in these measurements is shown in Figs. 8.7(a–c), where

a phononic-crystal region between the two waveguides enables controlled coupling of two

Brillouin-active acoustic modes. The frequency response obtained by such a device exhibits

a two-pole lineshape, with a sharp frequency roll-off compared to the typical Lorentzian

response obtained from a single acoustic resonance, as was discussed in Section 6.4.

We use a two-pole PPER device with four lines of holes between the two waveguides,

yielding the frequency response seen in Fig. 8.7(d), showing a two-pole response at frequency

Ω0/(2π) = 4.2 GHz, and strong suppression of other acoustic modes, which are outside the

phononic crystal stop-band. When using the two-pole device within the notch-filter scheme,
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Figure 8.8: (a) Measurements of the frequency response of a PPER-based filter, for both
single-pole (blue) and two-pole (red, dashed) filters. (b) Measurements of the corresponding
notch filter response. (c) Calculation of the expected frequency response, following Eqs.
(8.10) and (8.13). (d) Calculation of the frequency response of the corresponding notch
filters, following Eqs. (8.12) and (8.15). In the calculations, we have assumed a time delay
with m = 0, and for the two-pole filter case, we have used µ = Γ/2.

as shown in the bottom panel of Figs. 8.7(d,e), we see 46 dB of RF signal suppression at

the notch frequency Ω0 and less than 1 dB of ripple over an 8 GHz range. The measured

filter lineshapes are consistent with theory (Eqs. (8.13) and (8.15)), as seen in Fig. 8.8.

8.4 Notch-frequency tunability

In this section, we demonstrate how the wideband optical platform can be utilized to tune

the notch frequency of the filter over a large spectral range. This is achieved by using an

optical local oscillator (LO) to tune the input signal with respect to the Brillouin frequency,

similar to the demonstrations that were presented in Chapter 7. The experimental scheme
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used for the filter tuning demonstrations is illustrated in Fig. 8.9(a). In this configuration,

the input RF signal is encoded onto an optical carrier using a phase modulator. In the

absence of the LO, the phase modulation does not drive an acoustic field in the device,

because there is no modulation of the optical power that is required for the stimulated Bril-

louin process in the PPER. However, the introduction of the optical LO produces intensity

modulation through the beat note between the LO and the phase-modulation sideband. By

tuning the LO frequency, different spectral components of the phase modulation sideband

participate in the signal transduction and get encoded onto the phase of the light in the

‘receive’ waveguide. In our demonstration, the optical LO is synthesized from the same

laser source, using an intensity modulator driven at frequency ΩLO and a commercial op-

tical bandpass filter, such that the LO is at optical frequency ωLO = ω1 + ΩLO. We note

that the detected RF signal at the filter output is determined by the same beat note that

is driving the acoustic field, which is set by the LO. Hence, the output RF signal will be

shifted in frequency compared to the input RF signal, such that the filtered frequency will

always be at the Brillouin frequency, similar to the bandpass filter tuning scheme that was

analyzed in Section 7.4 (see Fig. 7.3(b)).

First, we demonstrate the shifting of the notch filter over a large spectral range. Fig.

8.9(b) shows aggregated data from multiple measurements, in which the notch frequency

is shifted in 2 GHz increments while maintaining its narrowband lineshape. Each trace

was acquired by setting the LO frequency (ΩLO), which effectively determines the notch

frequency, and sweeping the input RF signal (ΩRF) over a 1 GHz range. In all of the

measurements, the output RF signal was measured around the Brillouin frequency (Ω0 =

|ΩRF−ΩLO|), such that demodulation and detection stay identical to that of the static filter

case. For example, the notch response around 8.2 GHz (see green trace in Fig. 8.9(b)) was

obtained by setting the LO frequency at ΩLO = 4 GHz, sweeping the input RF signal in

the range ΩRF = 7.7–8.7 GHz, and measuring the output RF signal in the range 3.7–4.7

GHz (centered around the Brillouin frequency Ω0 = 4.32 GHz). All measurements show a

flat RF response over the sweeping range, and ∼40 dB of signal suppression at the notch

frequency.
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Figure 8.9: (a) Schematic illustration of the experimental setup used to tune the notch
filter frequency. The input RF signal is modulated using a phase modulator (PM), and
an optical local oscillator (LO) tone is synthesized using an intensity modulator (IM) and
an optical bandpass filter (BPF). VOA: variable optical attenuator, ODL: optical delay
line, EDFA: erbium-doped fiber amplifier, PC: polarization controller, RFSA: RF spectrum
analyzer. (b) Aggregated data from four measurements demonstrating the shifting of the
filter frequency over a wide range. For each measurement, the LO was set and the input
signal swept a 1 GHz span around the notch frequency. The insets show a magnified view
(6 MHz span) of the filter stop-band at each LO setting, demonstrating ∼40 dB extinction.
(c) Experimental demonstration of high-resolution filtering. The input RF signal consists
of three tones, separated in frequency by 5 MHz (left panel). By tuning the notch filter to
the frequency indicated by the red arrow (middle and right panels), one of the input tones
can be suppressed, without affecting the other tones.

Next, we proceed to show how the narrow bandwidth of the filter enables selective

suppression of RF tones with ∼MHz frequency resolution. We synthesize an input signal

consisting of RF tones separated in frequency by 5 MHz, seen in Fig. 8.9(c). While keeping

the input RF signal unchanged, we tune the LO such that the notch frequency is shifted,

suppressing specific input frequency components, without affecting nearby signals. To-

gether, these demonstrations show wideband tunability while maintaining high resolution,

a result of the combination of the photonic platform and the unique properties of acoustic

waves.
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8.5 Microwave-photonic link performance

In this section, we analyze the RF performance metrics of a microwave-photonic link im-

plementing narrowband notch-filtering operations using the PPER-based scheme, showing

their potential technological impact. Furthermore, the analysis of RF link metrics is impor-

tant when considering these microwave-photonic filters as part of larger, more complex RF

signal-processing systems. First, we will present the experimentally measured microwave

link parameters, including link gain, noise figure, and dynamic range. Then, we will theo-

retically model the RF link figures of merit in order to analyze the potential performance

of such notch-filtering schemes, following the previous discussions in Chapters 4 and 5.

8.5.1 Experimental results

We characterize the PPER-based notch filter RF link using the experimental scheme shown

in Fig. 8.3, with an additional optical amplifier (EDFA) at the output of the PPER device

to offset fiber-chip coupling losses. The RF link measurements were performed in the notch

filter pass-band, 30 MHz away from the notch frequency (Ω0), with an optical power of

P (B) = 79 mW on the detector, and we estimate the optical power in the ‘emit’ waveguide

of the PPER device at P (A) = 50 mW. The device used for the measurement was a single-

pole, phononic-crystal PPER (see Fig. 8.6(a–c)) with an active length of L = 17 mm. In

our measurements, the dominant noise source was amplified spontaneous emission from the

optical amplifiers, with a measured noise floor of N = −125.1 dBm/Hz.

We proceed to measure the microwave-photonic link parameters, including link gain,

noise figure, and dynamic range, following the same methods that were used in Chapter

7. First, an input RF tone at frequency Ωin = Ω0 + δΩ (where δΩ/(2π) = 30 MHz) is

injected into the link input and the RF power at the link output is measured at the same

RF frequency, showing a linear response, seen in Fig. 8.10(a). The RF link gain was

measured at G = −3.6 dB, such that the microwave-photonic link has a noise figure of

NF = 52.5 dB (where the input noise is assumed to be Nin = kBT = −174 dBm/Hz). At

high input RF powers, the output power is compressed, deviating from the linear trend,
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with a measured linear dynamic range of CDR1dB = 125.6 dB Hz. To quantify the spur-free

dynamic range of the microwave-photonic link, we measure the propagation of a third-

harmonic distortion through the link, similar to the measurement presented in Section

7.3. More specifically, the input RF signal frequency was set to Ωin = (Ω0 + δΩ)/3, and

the RF power at frequency Ωout = 3Ωin was measured at the link output. As can be

seen in Fig. 8.10(a), the output power follows a cubic trend, as expected from a third-

harmonic measurement. Extrapolating the linear and nonlinear measurements, we calculate

a spur-free dynamic range of SFDR3 = 93.6 dB Hz2/3. The corresponding inter-modulation

SFDR3, such as would be obtained from a two-tone measurement, is 3.2 dB Hz2/3 lower [198].

A summary of the measured RF link parameters is presented in Table 8.1.

The performance of the PPER device is determined by the strength of the forward

Brillouin interaction, which is given by the product of the optical power in the ‘emit’

waveguide (P (E)), the active-region length (L), and the Brillouin gain (GB), as was discussed

in Chapter 3. These will in turn affect the link performance of microwave-photonic systems

using the PPER device, such as the notch filters we are studying here. To demonstrate

the potential of the presented filtering scheme, we show how the link parameters scale with

optical power and device length. First, we repeat the RF link measurements using different

optical powers in the ‘emit’ waveguide of the PPER device, presented in Figs. 8.10(b–d).

By tuning the optical power injected into the ‘emit’ waveguide of the device, we can see

the enhancement of the link gain, which scales as G ∝ (G(B)P
(E)L)2, the reduction of the

noise figure, which scales as NF ∝ (GBP
(E)L)−2, and the improvement in dynamic range,

which scales as SFDR ∝ (GBP
(E)L)4/3, with higher optical power. The measurements were

repeated with a shorter PPER device, having an active-region length of L = 1.5 mm. As can

be seen from Fig. 8.10(b–d), the device yields a lower link gain, has a higher noise figure,

and a smaller dynamic range, a result of the reduction in the Brillouin interaction strength

(GBP
(E)L). This degradation in performance is expected since the Brillouin interaction

strength is ∼10 times weaker for the shorter device.
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Figure 8.10: (a) Measured RF output power as a function of RF input power, showing
the fundamental tone (circles) and the third harmonic (squares) of the microwave-photonic
link. Extrapolated linear trends and the third-order intercept point are shown for reference.
(b) RF link gain as a function of optical power in the ‘emit’ waveguide, measured using
two PPER devices, with active lengths of L = 17 mm (blue) and L = 1.5 mm (red). (c)
Corresponding noise figure and (d) third-order spurious-free dynamic range. The inter-
modulation SFDR3 is 3.2 dB Hz2/3 lower than the results shown here which were measured
using the third harmonic. The trends expected from theory are shown for reference: slope
2 for link gain (panel (b)), slope −2 for noise figure (panel (c)), and slope 4/3 for dynamic
range (panel (d)).

8.5.2 Potential link performance

Next, we use the results developed in Section 8.2 to calculate key RF link metrics and to

explore potential performance as a function of system parameters. We return to Eq. (8.12),

and calculate the average output RF power, using P
(Ω)
out = 〈I2〉Rout|Hpd|2, where Rout is

the output impedance of the detector and Hpd is the photodiode circuit efficiency [198].

Expressing the input signal in terms of RF power, using P
(Ω)
in = V 2

in/(2Rin), where Rin is
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Table 8.1: Measured microwave-photonic link parameters, corresponding to the data pre-
sented in Fig. 8.10(a).

Parameter Value Description

G (dB) −3.6 RF link gain

N (dBm/Hz) −125.1 Noise floor

NF (dB) 52.5 Noise figure1

OIP3 (dBm) 15.1 Output intercept point2

SFDR3

(
dB Hz2/3

)
93.6 Spur-free dynamic range3

P 1dB
in (dBm) 4.1 1 dB compression point

CDR1dB (dB Hz) 125.6 Linear dynamic range
1 Assuming Nin = kBT = −174 (dBm/Hz).
2 Inter-modulation OIP3 is 4.8 dB lower.
3 Inter-modulation SFDR3 is 3.2 dB Hz2/3 lower.

the intensity modulator input impedance, we have

P
(Ω)
out =

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)GBP

(E)L
)2 ∣∣ξ(Ω)

∣∣2, (8.17)

from which we can calculate the link gain g = P
(Ω)
out /P

(Ω)
in in the filter pass-band (where

ξ(Ω)→ 1)

g =
1

4
η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)GBP

(E)L
)2
. (8.18)

We can see that the link gain increases with higher optical powers, device length, and

Brillouin gain, consistent with the measurements shown in Fig. 8.10(b). Furthermore, a

lower half-wave voltage of the intensity modulator at the link input (Vπ) results in higher

gain, as shown in the calculations presented in Fig. 8.11(a).

Next, we consider possible noise sources in the systems, with a noise spectral density

given by [144,198]

N = (1 + g) kBT︸ ︷︷ ︸
Thermal noise

+ 2qRout |Hpd|2 I(DC)︸ ︷︷ ︸
Shot noise

+ 4ηnsp~ω (gEDFA − 1)Rout |Hpd|2 I(DC)︸ ︷︷ ︸
EDFA noise

, (8.19)

where the DC current I(DC) was given in Eq. (8.16). The first term accounts for Johnson-

Nyquist noise at the link input and output, proportional to the link gain. The second term

is shot noise, where q is the electron charge. The third term considers the noise from an
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optical erbium-doped fiber amplifier (EDFA), where we assume the main contribution is

the beating of spontaneous emission with the signal [198], where nsp is the spontaneous

emission factor (of order unity), and gEDFA is the amplifier gain. Fig. 8.11(b) shows the

scaling of these noise sources with optical power and device length, for different cases of

modulator half-wave voltage values. We can see that the noise added when using an EDFA

is the dominant term and determines the noise floor of the microwave link.

We calculate the noise factor (F ) of the microwave-photonic link, a measure of the

degradation of signal-to-noise, given by

F =
SNRin

SNRout
=

P
(Ω)
in /Nin

P
(Ω)
out /Nout

=
Nout

gNin
, (8.20)

where we typically assume thermal noise at the link input (i.e., Nin = kBT = −174

dBm/Hz). Using Eqs. (8.18) and (8.19) for the gain and output noise, we can calcu-

late the expected noise figure of the link (NF = 10 log10(F )), as shown in Fig. 8.11(c) for

the case of a link using an EDFA, and in Fig. 8.11(e) for a link without an EDFA. In both

cases, we see the reduction in noise figure for stronger Brillouin interactions, consistent with

our experimental results (see Fig. 8.10(c)).

The main source of nonlinearity in the microwave-photonic link is the intensity mod-

ulator at the link input. When operating the modulator at quadrature, the third-order

nonlinearity is the dominant source of distortion. Following the derivation presented in

Chapter 5, we can calculate the third-order output intercept point (OIP3)

OIP3 = 3η2Rout|Hpd|2
(
P (B)GBP

(E)L
)2
, (8.21)

from which we can derive the third-order spur-free dynamic range, given by SFDR3 =

(OIP3/(NBRF))2/3, where BRF is the RF bandwidth measured at the link output. Figs.

8.11(d,f) show the calculated dynamic range, with and without optical amplification. These

results show an increase of the dynamic range with stronger Brillouin interactions, consistent

with our earlier experimental demonstration (see Fig. 8.10(d)).

The calculations presented here show the potential of PPER-based notch filters to yield
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sources are present. (e) Noise figure, in the case of a system without an optical amplifier
(EDFA). (f) Spur-free dynamic range, in the case of a system without an optical amplifier.
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a link gain of 20 dB, a noise figure of ∼20 dB, and a spur-free dynamic range >100 dB

Hz2/3, as can be seen in Figs. 8.11(c,d). Furthermore, full integration of the filter on-chip

could eliminate the need for optical amplification, which will reduce the noise floor (see Fig.

8.11(b)). The lower noise will enhance system performance, potentially improving the noise

figure by 10 dB, and the dynamic range by 20 dB Hz2/3, as can be seen in Figs. 8.11(e,f).

8.6 Notch-frequency selection

The cancellation of the microwave signal at the notch frequency is a result of the coherent

destructive interference between the signals from the two interferometer paths. To achieve

strong suppression, both the phase and amplitude of the signals have to be balanced (see

Fig. 8.2). In the case of a PPER device supporting multiple acoustic modes, the frequency

at which the cancellation occurs can be selected by matching the power and time-delay in

the reference arm of the interferometer to that of different signals from the PPER output,

which correspond to different acoustic modes. Multiple acoustic modes can be present in

the same device, as seen in Fig. 8.4(d), or could be a result of multiple PPER segments

designed to have different resonant frequencies, as was discussed earlier in Chapter 6.

As an example, we consider a single-pole PPER with two acoustic resonances at frequen-

cies Ω
(1)
0 and Ω

(2)
0 , with Brillouin gains G

(1)
B and G

(2)
B , respectively. Following our derivation

in the previous section, the output RF power can be written as

P
(Ω)
out = P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2

×
∣∣∣∣P (A) − 1

2
P (B)P (E)L

(
G

(1)
B

Γ

2
χ(1)(Ω) +G

(2)
B

Γ

2
χ(2)(Ω)

)∣∣∣∣2 ,
(8.22)

where we have assumed the path lengths are matched, such that ∆τ = 0. We can use the

difference in Brillouin gain to select the frequency at which strong signal suppression will

occur. If we set the power P (A) to balance the first resonance, i.e., P (A) = P (B)G
(1)
B P (E)L/2,
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a b

Figure 8.12: (a) The notch frequency can be switched between two resonances with different
Brillouin gains by matching the power to each resonance, assuming no time-delay in the
two interferometer paths. (b) In the case of two resonances with identical gain, the phase
induced by the time-delay between the two interferometer paths can be used to select the
notch frequency.

we will get cancellation of the signal at Ω
(1)
0 , while at frequency Ω

(2)
0 we will have

P
(Ω)
out

(
Ω

(2)
0

)
=

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)G

(1)
B P (E)L

)2
∣∣∣∣∣1− G

(2)
B

G
(1)
B

∣∣∣∣∣
2

. (8.23)

Here, we have assumed that the two acoustic modes are well separated, such that χ(1)(Ω
(2)
0 ) =

χ(2)(Ω
(1)
0 ) = 0. Alternatively, if we set the optical power to match the second resonance,

such that P (A) = P (B)G
(2)
B P (E)L/2, we will get perfect cancellation at frequency Ω

(2)
0 , while

at frequency Ω
(1)
0 the power is given by

P
(Ω)
out

(
Ω

(1)
0

)
=

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)G

(2)
B P (E)L

)2
∣∣∣∣∣1− G

(1)
B

G
(2)
B

∣∣∣∣∣
2

, (8.24)

As an example, we assume that the Brillouin gain of two modes differs by 3 dB, i.e.,

G
(1)
B = 2G

(2)
B , and that they are separated in frequency by 1 GHz. When the signal is fully

suppressed at frequency Ω
(1)
0 = 3.5 GHz, there will be a 6 dB dip at Ω

(2)
0 = 4.5 GHz, as

seen in the calculation in Fig. 8.12(a). In this example, when the amplitude is matched to

cancel the signal at Ω
(2)
0 , there will be no ripple in the frequency response at Ω

(1)
0 .
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Figure 8.13: (a) Measured frequency response of a PPER device showing multiple acoustic
modes. (b) The corresponding notch filter response, when the interferometer is set to

achieve cancellation of the signal at frequency Ω
(1)
0 = 4.3 GHz. (c) A magnified view shows

spurs at frequencies corresponding to other acoustic modes. (d) Magnified view, showing the

ripple around frequency Ω
(2)
0 = 1.9 GHz and ∼40 dB of cancellation at frequency Ω

(1)
0 = 4.3

GHz. (e) By tuning the interferometer, using a variable optical amplifier (VOA), we shift

the notch filter to achieve signal cancellation at frequency Ω
(2)
0 = 1.9 GHz.
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We demonstrate the selection of the notch frequency experimentally, using a PPER

device with multiple acoustic resonances, seen in Fig. 8.13(a). By balancing the power of

the resonance at frequency Ω
(1)
0 = 4.3 GHz, we achieve a notch filter with ∼40 dB rejection

(Fig. 8.13(b)), while the other resonances produce a ripple of a few dB, as shown in the

magnified view in Figs. 8.13(c,d). By tuning the power P (A), matching it to the resonance at

frequency Ω
(2)
0 = 1.9 GHz, we shift the ∼40 dB notch response to Ω

(2)
0 , leaving a distortion

of 8 dB at Ω
(1)
0 , seen in Fig. 8.13(e). While this demonstration utilized acoustic modes

within the same PPER device that have different Brillouin gain, a similar calculation can

be carried out for the case of multiple PPER segments. In this case, the active segments can

be designed to have different active lengths L, resulting in an amplitude difference between

their corresponding signals, which can be used for notch frequency selection in a similar

way.

An alternative strategy for notch-frequency selection is to utilize the different phase

shift accumulated by different frequency components for a given time-delay. We consider

a system with two well-separated acoustic modes, which we now assume to have equal

Brillouin gain, and match the optical powers of the two interferometer paths, such that

P
(Ω)
out =

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)GBP

(E)L
)2

×
∣∣∣∣1− (Γ

2
χ(1)(Ω) +

Γ

2
χ(2)(Ω)

)
e−iΩ∆τ

∣∣∣∣2 .
(8.25)

Here, we can use the time-delay ∆τ to select the frequency at which perfect signal cancella-

tion occurs. By setting ∆τ = 2πm/Ω
(1)
0 (for integer m), strong signal suppression will occur

at frequency Ω
(1)
0 . By changing the time delay, such that ∆τ = 2πm/Ω

(2)
0 , we can shift the

notch frequency to Ω
(2)
0 . This is demonstrated numerically in Fig. 8.12(b), where we have

chosen the value m = 1, showing the shifting of the notch filter between two frequencies,

with a distortion of a few dB at the unsuppressed resonance.
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8.6.1 Inverting the frequency response

As we have seen in the previous sections, the frequency response of the notch filter is set by

the phase relation between the two interferometer arms. When the signals are exactly out

of phase, we achieve a notch filter response, assuming both signals have equal powers. If,

however, the signals add in phase, by setting the time delay such that ∆τ = π/Ω0 + 2πm

(for integer m), the resulting frequency response will show a peak of 6 dB at the resonance

frequency (see Fig. 8.2(b)). The ability to manipulate the frequency response using a phase

shift can be utilized for switching applications, where the notch filter can be effectively

turned on and off through control of a time-delay.

The change in the relative phase between the two signals can also be controlled through

the demodulation scheme we are implementing at the PPER output. The demodulation

we have used in our demonstration utilizes optical filtering of the light exiting the ‘receive’

waveguide of the PPER, such that only the optical carrier ω2 and the first upper sideband

(indices n = 0, 1 from Eq. (8.4)) are transmitted. However, if we use the optical filter to

select the carrier and the first lower sideband (indices n = −1, 0) and repeat the steps of

the derivation from the previous section, the photocurrent at the detector will be given by

I(Ω)(t) = −η
(
πVin

Vπ

)
Im

[
e−iΩt

(
P (A) +

1

2
P (B)GBP

(E)L
Γ

2
|χ(Ω)| e−i(Ω∆τ−φ)

)]
. (8.26)

When the power P (A) is set to the value needed for notch filtering and the time-delays of

the two optical paths are matched (∆τ = 0), the output RF power will be

P
(Ω)
out =

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2 (
P (B)GBP

(E)L
)2
∣∣∣∣1 +

Γ

2
χ(Ω)

∣∣∣∣2 . (8.27)

On resonance (Ω = Ω0), this yields a combined power that is four times larger than the

power off-resonance, since (Γ/2)χ(Ω0) = 1 and χ(Ω 6= Ω0) → 0. Hence, by switching the

sideband selected in the PPER demodulation, the notch filter response can be transformed

into a 6 dB peak in transmission. We demonstrate this experimentally, switching between

a ∼40 dB dip and a 6 dB peak, as seen in Fig. 8.14.
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Figure 8.14: (a) When the beat note produced by the intensity modulator (red) is out of
phase with the demodulated PPER output (orange), we achieve cancellation at the Brillouin
frequency. (b) Measured frequency response showing cancellation at the notch frequency.
(c) By tuning the bandpass filter, the demodulated signal is in-phase with the one produced
by the intensity modulator. (d) Measured response of the filter after tuning the bandpass
filter, showing a 6 dB peak as a result of the signals adding in phase.

8.7 Alternative notch-filtering implementations

In the notch-filtering scheme we have presented, the signals from the two interferometer

paths were combined in the optical domain before detection. However, there was no optical

interference in this scheme, as the wavelengths of the two fields were well separated, and the

interference was achieved in the microwave domain (i.e., the photocurrent in the detector).

In this section, we will consider alternative implementations of PPER-based notch filters,

using balanced detection, as well as optical interference, which both result in a narrowband

notch frequency response set by the PPER device.

8.7.1 Balanced detection

A possible variation to the PPER-based notch filter we have presented is to use two pho-

todetectors, each detecting the light from one of the interferometer paths. By combining

the photocurrents from the two detectors out of phase, we can achieve signal cancellation,
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as is typically implemented in balanced detection schemes. One such scheme is presented in

Fig. 8.15(a), where each path of the optical interferometer is detected separately, and the

signals from the two photodetectors are combined using an RF hybrid (i.e., RF directional

coupler) to achieve the desired notch filter response.

Analyzing this scenario, the field impinging on the first photodetector is the output of

the intensity modulator, which was described in Eq. (8.1). The photocurrent produced by

this detector at the RF input frequency (Ω) is given by

I
(Ω)
A = −2η(A)P̃ (A)J1

(
πVin

Vπ

)
sin Ωt, (8.28)
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b
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PC
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PC
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Ω
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PPER output

ω
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ω

ω

Figure 8.15: (a) Schematic illustration of the experimental setup used to demonstrate
PPER-based notch filtering using two photodetectors. IM: intensity modulator, VOA: vari-
able optical attenuator, ODL: optical delay line, BPF: optical bandpass filter, RFSA: RF
spectrum analyzer. EDFA: erbium-doped fiber amplifier, PC: polarization controller. (b)
Left: Measured frequency response of the notch filter. Right: Magnified view around the
filter notch frequency, showing 40 dB of signal suppression.
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where η(A) is the responsivity of the detector. The photocurrent produced by the second

detector is a result of the demodulated PPER output, which was described in Eq. (8.5),

and calculating the photocurrent at frequency Ω gives us

I
(Ω)
B = 2η(B)P̃ (B)J0 (βin) J1 (βin) sin (Ωt− φ), (8.29)

where η(B) is the responsivity of the second detector. Combining the currents from Eqs.

(8.28) and (8.29) yields

I(Ω)(t) = 2

[
η(B)P (B)J0 (βin) J1 (βin) sin

(
Ω
(
t− τ (B)

)
− φ

)
− η(A)P (A)J1

(
πVin

Vπ

)
sin
(

Ω
(
t− τ (A)

))]
,

(8.30)

which has a similar form to Eq. (8.7) we had in our previous filtering scheme. The time-

delays τ (A) and τ (B) correspond to the time-delays of the two signal paths, which can be

adjusted in the optical or in the RF domain. The relation between the powers {P̃ (A), P̃ (B)}

and {P (A), P (B)} is determined by the ratios in which the currents are combined. Analyzing

the performance of this scheme is equivalent to that presented in the previous section, where

a possible difference in the responsivity of the two detectors needs to be taken into account.

An experimental demonstration of filtering using this scheme is presented in Fig. 8.15(b),

showing the measurement of a PPER-based notch filter with 40 dB of signal suppression at

the notch frequency.

8.7.2 Signal interference in the optical domain

Alternatively, signal cancellation can be achieved directly in the optical domain, rather than

through RF signal interference. This filtering scheme is shown schematically in Fig. 8.16(a),

illustrating the cancellation of the optical sidebands at the notch frequency before detection.

By using the same laser source for both the ‘emit’ and ‘receive’ waveguides of the PPER,

all signals can be optically coherent, and the optical sidebands carrying the RF information

can directly interfere in the optical domain, resulting in the cancellation of the optical signal

at an optical frequency spaced by the Brillouin frequency from the carrier. After detection,
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this corresponds to suppression of the RF signal at the Brillouin frequency. In this case,

the interference occurs in the optical domain, and implementing such a microwave-photonic

filter requires a higher level of stabilization, which could be achieved by a fully integrated

device [310].

Using the expression for the combined field at the detector from Eq. (8.6), and assuming

RFSA

VOA

IM
Laser

Ω

RF input

Ω

RF output

PPER

Re

Im

PPER output

Re

Im

Intensity mod.

Re

Im

Combined field
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b c

ODL

G
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P
(E)
L G
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Figure 8.16: (a) PPER-based notch filtering using optical interference. IM: intensity mod-
ulator, VOA: variable optical attenuator, ODL: optical delay line, RFSA: RF spectrum
analyzer (b) Calculated RF link gain and (c) optical power needed to achieve signal can-
cellation as a function of the Brillouin interaction strength (solid blue line). The equivalent
calculation for the RF-interference notch-filtering scheme (see Section 8.2) is shown for ref-
erence (dashed red line).
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both fields have the same optical carrier frequency ω, we have

E(t) =

√
P (A)

2
e−iωt

(
i+
∑
n

Jn

(
πVin

Vπ

)
e−inΩt

)

+ i
√
P (B) e−iω(t+∆τ)

∑
n

i−nJ−n (βin) e−in(Ω(t+∆τ)−φ),

(8.31)

where we have defined the time delay between the two signals ∆τ . Next, we set the time

delay such that ω∆τ = π/2 + 2πm (fo integer m), resulting in

E(t) =

√
P (A)

2
e−iωt

(
i+
∑
n

Jn

(
πVin

Vπ

)
e−inΩt

)

+
√
P (B) e−iωt

∑
n

J−n (βin) e−in(Ω(t+∆τ)−φ+π/2).

(8.32)

For small RF signals (i.e., Vin � Vπ), we can expand the Bessel functions to first or-

der (J0(x) ≈ 1, J±1(x) ≈ ±x/2), neglecting higher order terms. Substituting βin ≈

GBP
(E)L(πVin/Vπ)|χ(Ω)|Γ/4 (see Eq. (8.3)), we have

E(t) =e−iωt

[(
i

√
P (A)

2
+

√
P (A)

2
+
√
P (B)

)

+ i

(
πVin

Vπ

)
Im

[
e−iΩt

(√
P (A)

2
− 1

2

√
P (B)GBP

(E)L
Γ

2
|χ(Ω)|e−i(Ω∆τ−φ+π/2)

)]]
.

(8.33)

To achieve cancellation at the Brillouin frequency, we set the optical power P (A) such that

P (A) = P (B)(GBP
(E)L)2/2, yielding

E(t) =
√
P (B)e−iωt

[(
1 +

1

2
GBP

(E)L+
i

2
GBP

(E)L

)

+ i

(
πVin

Vπ

)(
1

2
GBP

(E)L

)
Im

[
e−iΩt

(
1− Γ

2
|χ(Ω)|e−i(Ω∆τ−φ+π/2)

)]]
.

(8.34)

Calculating the photo-current at a detector (I = η|E|2), keeping the terms oscillating at
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frequency Ω, we have

I(Ω)(t) = 2η

(
πVin

Vπ

)
P (B)

(
1

2
GBP

(E)L

)2

Im

[
e−iΩt

(
1− Γ

2
|χ(Ω)|e−i(Ω∆τ−φ+π/2)

)]
.

(8.35)

Assuming a single-pole PPER device2 (see Eqs. (8.10) and (8.11)) we set the time delay

Ω0∆τ = −π/2 + 2πm (for integer m), giving us

I(Ω)(t) = 2η

(
πVin

Vπ

)
P (B)

(
1

2
GBP

(E)L

)2

× Im

[
e−iΩt

(
1− Γ

2
χ(Ω)e−i

[
(π/2)(1−Ω/Ω0)+2πm(Ω/Ω0)

]) ]
,

(8.36)

which has a similar form to Eq. (8.12). We can calculate the output RF power (P
(Ω)
out =

〈I2〉Rout|Hpd|2), yielding

P
(Ω)
out =

1

4
P

(Ω)
in η2Rout|Hpd|2Rin

(
π

Vπ

)2

P (B)2
(
GBP

(E)L
)4
∣∣∣∣1− Γ

2
χ(Ω)e−i

[
(π/2)(1−Ω/Ω0)

]∣∣∣∣2 ,
(8.37)

where we have expressed the input RF signal in terms of power (P
(Ω)
in = V 2

in/(2Rin)). The

RF link gain in the filter pass-band (i.e., χ(Ω)→ 0) is given by

g =
1

4
η2Rout|Hpd|2Rin

(
π

Vπ

)2

P (B)2
(
GBP

(E)L
)4
. (8.38)

We see that in this case, the RF link gain scales with the fourth power of the Brillouin

interaction strength (GBP
(E)L), rather than the quadratic scaling we saw earlier. Fig.

8.16(b) shows the calculated RF link gain as a function of GBP
(E)L and compares it to

that obtained for the RF-interference notch-filtering scheme discussed in Section 8.2. Fig.

8.16(c) presents the required optical power P (A) needed to achieve signal cancellation at

the notch frequency. We can calculate the DC current at the detector when the power P (A)

2. A similar analysis can be performed for a two-pole PPER response, as was detailed in Section 8.2.
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Figure 8.17: Calculated RF link performance for the optical interference scheme (see Fig.
8.16) as a function of the acousto-optic interaction strength in the PPER device (GBP

(E)L).
The values used for calculations are typical to the device and link demonstrated in this work,
assuming 100 mW of optical power on the detector. (a) RF link gain, for different values
of modulator half-wave voltages. (b) Noise spectral density of the noise sources considered
in Eq. (8.19). (c) Noise figure, assuming all three noise sources are present. (d) Spur-free
dynamic range, assuming all three noise sources are present. (e) Noise figure, in the case
of a system without an optical amplifier (EDFA). (f) Spur-free dynamic range, in the case
of a system without an optical amplifier.
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is set for notch filtering

I(DC) = η
(
P (A) + P (B) +

√
2P (A)P (B)

)
, (8.39)

from which we can derive the noise at the microwave-photonic link output using Eq. (8.19),

as well as the noise figure and dynamic range (Eqs. (8.20) and (8.21)), seen in Fig. 8.17. We

can see enhanced performance when increasing the Brillouin interaction strength, showing

higher gain, lower noise figure, and a larger dynamic range.

8.8 Conclusion

In this chapter, we have an presented an important application of the photonic-phononic

emit-receive (PPER) device scheme, implementing narrowband, tunable microwave-photonic

notch filters in a standard silicon platform. By designing an interferometer with a narrow-

band PPER-based filter in one of the optical paths, we can transform the narrow bandpass

response of the PPER device into a notch filter, achieving a high level of signal suppres-

sion at the notch frequency. When comparing to other recently demonstrated integrated

microwave-photonic filters, this filter stands out for its high spectral resolution (∼MHz)

while maintaining high signal rejection, as seen in Fig. 8.18. We have demonstrated how

the filter can be tuned over a wide spectral range utilizing the wideband photonic platform

while maintaining a narrowband notch response determined by the acoustic properties of the

device. Furthermore, we have shown how the unique properties of the PPER scheme enable

the design of multi-pole filters, as well as the suppression of unwanted acoustic resonances

through phononic band engineering.

We have demonstrated PPER devices that were fabricated with standard photolithogra-

phy methods, with an additional wet-etch step to suspend the active regions of the devices,

which could also be incorporated into foundry production in the future. The use of mature

fabrication technologies and a CMOS-compatible platform enables high-yield production

and robust performance, as was shown in Chapter 6. Additionally, it enables the possi-

bility of integrating electronic components on the same chip [48]. By integrating phase
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Figure 8.18: Summary of recently demonstrated integrated microwave-photonic notch fil-
ters, showing filter rejection and spectral resolution (FWHM: full-width at half-maximum).
Surveyed work includes Brillouin-based filtering [142,240,246], filters using ring resonators
and interferometers [221,222,227,291,295,296,309,310,319,320,323–326], comb-generation
and spectral shaping [303], incoherent multi-tap filtering [308], and Brillouin scattering
combined with resonators [241,256].

shifters [327], optical attenuators [47], and filters [52] in the silicon platform, all of the

components of a PPER-based filter can be implemented on-chip. Fig. 8.19 presents an

artistic illustration of how a PPER device could be integrated, including all of the optical

and electrical components needed for the filtering scheme.

In our experimental demonstrations, all measurements were performed with no active

stabilization and with free-running laser sources. The fluctuations in power and phase of

the signals in the two interferometer paths set the limit on the signal rejection we could

demonstrate experimentally. By fully integrating the filter on-chip, the stability of the

interferometer can be greatly enhanced, reducing fluctuations and yielding higher stop-band

rejection.

Using a PPER device for microwave-photonic filtering has several advantages when

considering their integration into larger microwave-photonic systems. The spatial separation

of ‘emit’ and ‘receive’ paths eliminates unwanted reflections and reduces the effects of other

optical nonlinearities such as Kerr-induced four-wave-mixing. Furthermore, the forward-

Brillouin geometry obviates the need for circulators or isolators, facilitating the path to full

integration, as these components can be challenging to implement on-chip. Additionally,

this filtering scheme uses a conventional intensity or phase modulator and does not require

advanced modulation methods or additional signal preparation.
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Figure 8.19: Schematic illustration of a fully integrated PPER-based notch filter, including
an electro-optic modulator, an active-Brillouin suspended section performing the PPER
operation, and a detector. Other integrated components can include ring resonators, phase
shifters, and directional couplers.

The low-loss waveguides used in the PPER devices, with a typical linear loss of ∼0.2

dB/cm [64, 187], can enable the design of filter arrays with minimal degradation of the

signal as it propagates through the system. More specifically, the notch frequency of each

filter can be determined through its geometry, and by cascading filters in series, we can

achieve multiple notch frequencies, as illustrated in Fig. 8.20. The presence of multiple

acoustic modes could also be used to shift the notch frequency response, by balancing

the interferometer to strongly suppress a specific mode, without much distortion to other

frequencies. A proof-of-concept has been demonstrated here utilizing multiple Brillouin-

active modes within a single PPER segment, however, this can also be performed between

resonances of separate PPER sections. Additionally, we have discussed how the time delay

between the interferometer paths could also be used for notch frequency selection.

Another possible notch filtering scheme consisting of multiple PPER devices is illustrated

in Fig. 8.21. Here, the PPER devices are set in parallel, and in each device, an optical

local oscillator is used to select the spectral region that is being filtered, similar to the

scheme presented in Section 8.4. By combining the demodulated outputs of all the PPER

devices, along with the output of an intensity modulator, multiple notch frequencies can

be obtained, each separately tunable using an optical local oscillator. While such a system

requires more components compared with other schemes presented here, all of the necessary

elements, namely modulators, filters, and directional couplers, can be integrated on-chip and
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Figure 8.20: Schematic illustration of three cascaded PPER filters used to produce three
notch frequencies. In this scheme, the geometry of each PPER segment is designed to have a
different Brillouin frequency. IM: intensity modulator, BPF: optical bandpass filter, RFSA:
RF spectrum analyzer.

are compatible with processes in existing silicon-photonic foundries.

The performance of PPER-based microwave-photonic notch filters is determined by the

strength of the Brillouin interaction in the device, as well as the properties of the electro-

optic modulator at the filter input. The RF link performance presented here, using a

centimeter-scale device, is comparable to many other filtering schemes [196, 209]. At the

pass-band of the notch filter, the performance of the PPER-based filter is determined by the

modulator at the filter input, and by using modulators with a low half-wave voltage [53,200],

as well as linearization schemes [201], lower noise figure and a larger dynamic range could

be possible. Additionally, cascading the filter with a microwave low-noise amplifier can

improve the noise figure, as was demonstrated in Chapter 7.

The Brillouin interaction in the device is proportional to its length (L), the optical power

in the ‘emit’ waveguide (P (E)), and the Brillouin gain (GB), which is determined by the

material properties, waveguide design, and the acoustic dissipation rate. Improving any of

these parameters will enhance the RF performance of the filter. For example, we can expect

a device of length L = 5 cm (keeping all other properties constant) to improve the link gain

by 10 dB compared to the measurements we have presented here. In our demonstrations, the
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Figure 8.21: (a) Schematic illustration of three PPER-based filters used to achieve inde-
pendently tunable notch frequencies. PM: phase modulator, IM: intensity modulator, BSF:
optical bandstop filter, RFSA: RF spectrum analyzer. (b) In each of the PPER devices,
an optical local oscillator selects the spectral band that is transduced in the device. (c) At
the detector, the signals from the different segments are combined, and their interference
with the output of an intensity modulator results in the multiple-notch frequency response.
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noise floor was set by the optical amplifiers (EDFA) used in the experiments. By integrating

more of the filter components on-chip, fiber-chip coupling losses could be avoided (such that

amplifiers may not be needed), vastly decreasing the noise floor and improving the noise

figure and dynamic range of the RF link. It is important to note that the Brillouin process

adds noise, however, only around a narrow band centered at the Brillouin frequency. In

the notch filtering scheme presented here, the Brillouin frequency is in the stop-band of the

filter, and Brillouin noise does not affect signals a few MHz away, leaving the pass-band of

the filter unaffected.
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Using inter-modal Brillouin scattering

in emit-receive operations

9.1 Introduction

In the previous chapters, we have focused on photonic-phononic emit-receive (PPER) de-

vices utilizing intra-modal forward Brillouin scattering, studying their properties and show-

ing how they can be used for filtering operations. More specifically, in the devices we

have considered so far, all of the optical tones in each waveguide were guided in the same

spatial and polarization mode, and described by the same dispersion relation. In this chap-

ter, we will analyze devices utilizing the nonlocal properties of forward Brillouin scattering

between different optical modes, i.e., inter-modal Brillouin scattering. Building on the the-

oretical analysis presented in Chapter 3, we will describe nonlocal susceptibilities produced

by inter-modal Brillouin scattering, focusing on the case where light is scattered between

two different guided spatial modes. Similar to the intra-modal case, the acoustic modes

that mediate the interaction are mostly transverse and can extend a large space beyond

the optical-guiding region. The extended nature of these phonons enables interaction with

spatially separated optical waveguides, yielding a nonlocal effect, and can be used to design

PPER structures.

225
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When utilizing scattering processes between distinct guided modes, the field dynamics

are vastly different compared to the forward intra-modal Brillouin scattering we have an-

alyzed thus far. An intriguing property of inter-modal scattering is the ability to achieve

a nonreciprocal response thanks to the unique phase-matching conditions of the system

[137, 328]. Such optical nonreciprocity is an active area of research [329–331], as it is a

promising strategy to be implemented in chip-integrated devices [136, 138]. Recently, an

inter-modal PPER scheme has been used to demonstrate nonreciprocity in a standard silicon

platform [139]. This nonlocal inter-band Brillouin scattering (NIBS) device demonstrated

up to 38 dB of isolation and a transmission bandwidth of 1 nm (125 GHz). In the following

sections, we will explore strategies to enhance the capabilities of such nonreciprocal NIBS

devices. We will show how optical dispersion engineering could potentially increase the

bandwidth of NIBS devices by an order of magnitude, and that varying the spatial distri-

bution of Brillouin gain in the device could be used to enhance the nonreciprocal contrast.

Additionally, we will examine the possibilities of resonantly enhancing the efficiency of NIBS

devices, which may enable the design of low-loss optical isolators.

Another important feature of inter-modal Brillouin scattering is its single-sideband na-

ture [30, 65], which can provide opportunities in the context of optical and microwave-

photonic filtering. As we have seen in Chapter 7, intra-modal forward Brillouin PPER-based

filters are limited in the maximum signal bandwidth they can process without distortion (see

Fig. 7.5). This limitation is a result of the dual-sideband nature of the intra-modal Brillouin

process, similar to the distortion from an image frequency in heterodyne receivers [288]. By

using inter-modal scattering in PPER-based microwave-photonic filters, the bandwidth lim-

itation could be avoided, enabling the design of filters that could be translated over terahertz

frequency ranges. Utilizing the design strategies presented in Chapter 6, we will present

a two-pole inter-modal PPER device achieving a narrow bandwidth of 4.4 MHz, a sharp

frequency roll-off, and a stopband of 4 GHz, while demonstrating 22 dB of single-sideband

contrast. Such devices could potentially implement filtering operations with ∼MHz resolu-

tion and be tunable over optical-wavelength scales (∼THz) to perform optical and microwave

signal processing operations within an integrated silicon platform.
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9.2 Inter-modal scattering analysis

We use the theory presented in Section 2.3.3 to analyze a photonic-phononic emit-receive

(PPER) scheme utilizing inter-modal Brillouin interactions. There are multiple configu-

rations in which the device can be operated, choosing different combinations of spatial

modes and Stokes or anti-Stokes processes [139]. For our discussion here, we consider the

interaction between four optical fields. These include pump and Stokes tones in the ‘emit’

waveguide, and pump and Stokes tones in the ‘receive’ waveguide. In each waveguide, we

assume that the pump and Stokes waves are propagating in two different spatial modes, and

a single extended acoustic mode supported by the device interacts with the fields in both

waveguides through inter-modal Brillouin scattering. Other configurations can be examined

similarly.

We consider traveling wave interactions between the pump tone (a
(A)
p ) and the Stokes

tone (a
(A)
s ) in the ‘emit’ waveguide (denoted A), described by

∂

∂z
a(A)

p = − i

v
(A)
p

g(A)a(A)
s b,

∂

∂z
a(A)

s = − i

v
(A)
s

g(A)∗a(A)
p b†, (9.1)

where we have assumed that the process is phase matched, and we have neglected optical

loss. Here, the acoustic field amplitude is denoted b, g(A) is the acousto-optic coupling rate

in waveguide A, and v
(A)
p and v

(A)
s are the optical group velocities of the pump and Stokes,

respectively, which are different as they are guided in different modes, as seen in Fig. 9.1(a).

We note that unlike the intra-modal case, cascading to other optical tones does not occur

in inter-modal scattering, and we do not need to consider additional optical fields.

In the ‘receive’ waveguide (denoted B), the pump and Stokes optical modes (with am-

plitudes a
(B)
i and group velocities v

(B)
i , i = {p, s}) are given by

∂

∂z
a(B)

p = − i

v
(B)
p

g(B)a(B)
s b ei∆qz,

∂

∂z
a(B)

s = − i

v
(B)
s

g(B)∗a(B)
p b† e−i∆qz, (9.2)

where g(B) is the acousto-optic coupling rate in waveguide B. Notice that we have introduced

a phase-mismatch term ∆q, which can be the consequence of different dispersion relations
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between waveguides A and B, or a difference in the optical frequency of the light in each

waveguide, as illustrated in 9.1(b).

Finally, the phonon mode participating in the interaction is described by

b = −iχ
[
g(A)∗a(A)

p a(A)
s

†
+ g(B)∗a(B)

p a(B)
s

†
e−i∆qz

]
, (9.3)

showing the interaction with the optical fields in both waveguides, where χ denotes the

acoustic frequency response with a Lorentzian lineshape (i.e., χ = [i(Ω − Ω0) + Γ/2]−1,

where Ω0 is the Brillouin frequency and Γ is the phonon dissipation rate). To simplify our

analysis, we will assume at this point that the phonons are driven primarily in waveguide

A, and neglect the effects of scattering in waveguide B on the acoustic field. This is the

case, for example, when a
(A)
p a

(A)
s

†
� a

(B)
p a

(B)
s

†
, leaving us with

b ≈ −iχg(A)∗a(A)
p a(A)

s

†
. (9.4)

We can see that under this assumption, the phonon field is fully determined by the optical

fields and the acousto-optic coupling in the ‘emit’ waveguide.

9.2.1 Transmission bandwidth

We analyze the optical transmission through the ‘receive’ waveguide, examining the optical

bandwidth over which efficient inter-modal Brillouin scattering occurs, as illustrated in Fig.

9.1(c). Focusing on the Stokes field in waveguide B, we use Eqs. (9.2) and (9.4) to write

the field amplitude

∂

∂z
a(B)

s =
1

v
(B)
s

χ∗g(B)∗g(A)a(B)
p a(A)

p

†
a(A)

s e−i∆qz, (9.5)

showing nonlocal susceptibility, where the ‘receive’ waveguide is affected by the fields in the

spatially-separated ‘emit’ waveguide. To gain insight into the effects of the phase mismatch

on the optical transmission, we assume that all of the input fields (a
(B)
p , a

(A)
p

†
, and a

(A)
s )
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are undepleted, such that they are constant throughout the device, leaving us with

a(B)
s (z) =

1

v
(B)
s

χ∗g(B)∗g(A)a(B)
p a(A)

p

†
a(A)

s

∫ z

0
dz′ e−i∆qz

′
. (9.6)

The optical power, after a propagation length L, is given by

Ps(L) ∝
∣∣∣a(B)

s (L)
∣∣∣2 =

∣∣∣∣∣ 1

v
(B)
s

χ∗g(B)∗g(A)a(B)
p a(A)

p

†
a(A)

s L

∣∣∣∣∣
2

sinc2

(
∆qL

2

)
. (9.7)

We can see that the phase mismatch and interaction length determine the transmission of

light through the device. Evaluating the full-width at half-maximum (FWHM) of the sinc

function from Eq. (9.7) (i.e., sinc2(1.39) = 0.5), we can define the 3 dB phase-matched

bandwidth

∆q =
5.56

L
. (9.8)

This response is similar to that of χ(2) optical nonlinearities, describing a three-wave in-

teraction with undepleted pumps [157]. In our case, the three waves include two photon

modes and one phonon mode.

We have seen that the optical transmission bandwidth is determined by the wavevec-

tor mismatch. The phase-matched bandwidth ∆q can be expressed in terms of system

parameters which are more practical in device design and experiments, namely optical dis-

persion and wavelength. We start from the driven phonon in the system, with a wavevector

determined by the optical modes in the ‘emit’ waveguide

q0 = k
(A)
+

(
ω(A)

p

)
− k(A)
−

(
ω(A)

s

)
= k

(A)
+

(
ω(A)

p

)
− k(A)
−

(
ω(A)

p − Ω0

)
,

(9.9)

where we have assumed that the pump wave propagates in a symmetric spatial mode, with

a dispersion relation k
(A)
+ (ω), while the Stokes wave is in the anti-symmetric mode, with

dispersion k
(A)
− (ω). We have also used energy conservation, i.e., ω

(A)
s = ω

(A)
p − Ω0, where

Ω0 is the phonon frequency (see Fig. 9.1(a)).

In the ‘receive’ waveguide, we assume that the input pump wave is propagating in the
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Figure 9.1: (a) Dispersion diagram of the optical modes in the ‘emit’ waveguide. A pump

tone at frequency ω
(A)
p and a Stokes tone at frequency ω

(A)
s drive an inter-modal Brillouin-

active acoustic mode with frequency Ω0. (b) Dispersion diagram of the optical modes in
the ‘receive’ waveguide. In the forward direction (positive k vectors), the driven acoustic
mode couples an input pump tone in the symmetric mode to a Stokes tone in the anti-
symmetric mode. This process is efficient over a bandwidth ∆ω, after which the phase
mismatch ∆q suppresses scattering. In the backward direction (negative k vectors), an
input pump tone in the anti-symmetric will no experience efficient scattering, as there is
a phase mismatch ∆qback. At a different optical frequency, separated by δω, the process
is phase-matched in the backward direction. (c) Illustration of the device operating in
the forward direction, where all fields are co-propagating. (d) Illustration of the output
power as a function of optical frequency in the ‘receive’ waveguide in the forward direction.
(e) In the backward direction, optical fields in the ‘receive’ waveguide counter-propagate
compared to the fields in the ‘emit’ waveguide. (f) Illustration of the output power as a
function of optical frequency in the ‘receive’ waveguide in the backward direction, showing
that the process is phase-matched at a different frequency.
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symmetric mode, with dispersion k
(B)
+ (ω), and analyze the scattering into the asymmetric

mode, k
(B)
− (ω), which will be red-shifted in frequency, as seen in Fig. 9.1(b). The phase

mismatch is given by

∆q = q0 −
[
k

(B)
+

(
ω(B)

p

)
− k(B)
−

(
ω(B)

s

)]
=
[
k

(A)
+

(
ω(A)

p

)
− k(B)

+

(
ω(B)

p

)]
−
[
k

(A)
−

(
ω(A)

p − Ω0

)
− k(B)
−

(
ω(B)

p − Ω0

)]
,

(9.10)

where we have used Eq. (9.9) and energy conservation in the ‘receive’ waveguide, i.e.,

ω
(B)
s = ω

(B)
p − Ω0. For this discussion, we will assume that the dispersion curves in the

‘emit’ and the ‘receive’ waveguides are identical (k
(A)
+ = k

(B)
+ and k

(A)
− = k

(B)
− ), such that

perfect phase matching occurs when ω
(A)
p = ω

(B)
p . When the two waveguides have different

dispersion properties, the phase-matched frequency will be shifted, however, the analysis

remains similar [139].

Assuming the dispersion curves are approximately linear over the frequency range of

interest1, we can express the dispersion relations in terms of the group velocity (vg = ∂kω),

or equivalently, the group index (ng = c/vg) of the two optical modes

k+ (ω) = k
(0)
+ +

n+

c
ω, k− (ω) = k

(0)
− +

n−
c
ω, (9.11)

where k
(0)
+ and k

(0)
− are constants around which we are expanding the dispersion functions,

and we have denoted the group velocities and group indices as v± and n±, respectively.

From Eqs. (9.10) and (9.11) we see that the phase mismatch is given by

∆q =
n+ − n−

c
∆ω, (9.12)

where ∆ω is the frequency measured from the phase-matched frequency. Using Eq. (9.8),

1. This is a valid assumption since the Brillouin frequency is typically <10 GHz, much smaller than the
optical frequencies in the system (∼100 THz).
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this gives us the transmission bandwidth

∆ω =
c

L

5.56

|n+ − n−|
, (9.13)

illustrated in Fig. 9.1(d), which can also be expressed in terms of optical wavelength

∆λ =
2.78

π

(
λ2

0

L

)
1

|n+ − n−|
. (9.14)

We can see that the bandwidth is inversely proportional to the device length, as well as the

difference in group indices of the two optical modes.

9.2.2 Nonreciprocal optical propagation

Next, we consider the case of light propagating in the ‘receive’ waveguide in the opposite

direction, as illustrated in Fig. 9.1(e). The phase mismatch is now given by

∆q = q0 +
[
k

(B)
−

(
ω(B)

p

)
− k(B)

+

(
ω(B)

s

)]
=
[
k

(A)
+

(
ω(A)

p

)
− k(B)

+

(
ω(B)

p − Ω0

)]
−
[
k

(A)
−

(
ω(A)

p − Ω0

)
− k(B)
−

(
ω(B)

p

)]
,

(9.15)

where we have switched the signs of the wavevectors and the spatial modes of the pump and

Stokes in the ‘receive’ waveguide. Assuming the two waveguides are identical, and using

the first order approximation of the dispersion relations from Eq. (9.11), we have

∆q =
n+

c

[
ω(A)

p − ω(B)
p + Ω0

]
− n−

c

[
ω(A)

p − Ω0 − ω(B)
p

]
, (9.16)

and to find the optical frequency at which there is perfect phase matching in the backwards

direction, we set ∆q = 0, resulting in

δω =

(
n+ + n−
n+ − n−

)
Ω0. (9.17)

Here, δω = ω
(emit)
p − ω(rec)

p , which is also the frequency spacing between the forward and

backwards phase-matched optical frequencies, as illustrated in Fig. 9.1. In terms of wave-
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length, this separation is given by

δλ = −λ2
0

Ω0

2πc

(
n+ + n−
n+ − n−

)
, (9.18)

and we see that the dispersion relations, namely the difference in group indices, will deter-

mine this wavelength separation.

We have seen that phase-matched mode conversion in the ‘receive’ waveguide occurs at

different wavelengths for forward and backward propagation (assuming that the fields in

the ‘emit’ are unchanged), showing the nonreciprocal nature of optical transmission through

the device. Another way we examine the nonreciprocity of this process is to set the pump

wavelength in the ‘receive’ waveguide for perfect phase matching in the forward direction

and calculate the phase mismatch at the same optical frequency when operating in the

backward direction. Using Eqs. (9.12) and (9.17), this ‘backward’ phase mismatch is given

by

∆qback =
Ω0

c
(n+ + n−) . (9.19)

Practically, a nonreciprocal response will be observed when the active length over which the

interaction is taking place is large enough, such that ∆qbackL > π, which requires a minimum

length L ∼ 10 mm for the silicon devices we are studying in this work. This is equivalent

to the requirement |δλ| > ∆λ in terms of wavelengths (see Eqs. (9.14) and (9.18)). In

other words, the separation between the sinc2(·) functions describing the transmission in

the forward and backward directions needs to be larger than their bandwidth (see Figs.

9.1(d,f)). Experimental data showing the measurement of a NIBS device is presented in

Fig. 9.2, demonstrating nonreciprocal optical transmission, with a difference in power of up

to 30 dB between forward- and backward-propagating waves. The forward and backward

phase-matched optical wavelengths are separated by δλ = 3.2 nm, and the transmission

bandwidth is ∆λ = 1.4 nm.
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Figure 9.2: Characterization of a NIBS nonreciprocal modulator, with a device similar
to the design from Ref. [139], and an active length of L = 12 mm. (a) Forward optical
transmission, sweeping the driven phonon frequency Ω, and the optical wavelength in the
‘receive’ waveguide (λ). (b) Optical power, corresponding to the dashed horizontal line from
panel (a), with peak transmission at 1530.8 nm, and a 3 dB bandwidth of ∆λ = 1.40 nm.
The dashed red line shows the backward optical transmission for reference. (c) Acoustic
frequency response, corresponding to the dashed vertical line from panel (a), showing a
Lorentzian lineshape with a 3 dB bandwidth of 8.4 MHz. (d) Backward optical transmission
in the same device. (e) Optical power, demonstrating the nonreciprocal response, where
peak transmission is shifted by δλ = 3.2 nm (dashed horizontal line from panel (d)). The
dashed blue line shows the forward optical transmission for reference. (f) Acoustic frequency
response (dashed horizontal line from panel (d)). The experimental setup used to measure
the data is illustrated in Fig. 9.11.
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9.3 Implementing an optical isolator

We have seen that under the right conditions, a NIBS device demonstrates nonreciprocal

optical transmission, and can be utilized as an optical isolator. There are many config-

urations in which these devices can be operated, depending on the modes and nonlinear

processes that are used. Here, we will focus on two schemes based on the discussion from the

previous section. As we did in our earlier analyses, we will neglect the effect of the ‘receive’

waveguide on the acoustic field, which we will still treat as a constant (i.e., undepleted).

However, we will not assume the pump field in the ‘receive’ waveguide is constant, and

analyze the spatial evolution and power exchanged between the pump and Stokes modes.

Solving Eqs. (9.2) and (9.3), we have

a(B)
p (z) = ei(∆q/2)z

[
a(B)

p (0)

(
cos (βz)− i∆q/2

β
sin (βz)

)

− ia(B)
s (0)

π/2
β`c

√√√√v
(B)
s

v
(B)
p

 eiφ sin (βz)

]
,

a(B)
s (z) = e−i(∆q/2)z

[
a(B)

s (0)

(
cos (βz) + i

∆q/2

β
sin (βz)

)

− ia(B)
p (0)

π/2
β`c

√√√√v
(B)
p

v
(B)
s

 e−iφ sin (βz)

]
,

(9.20)

where we have defined the parameters

β =

√(
∆q

2

)2

+

(
π/2

`c

)2

, `c =
π

2

√
v

(B)
p v

(B)
s∣∣b g(B)
∣∣ , φ = arg

(
bg(B)

)
. (9.21)

Using these equations, we can analyze the light scattered between the pump and Stokes

waves in the ‘receive’ waveguide, each propagating in a separate spatial mode, as a function

of the phase mismatch ∆q.

We start from the case of perfect phase matching, i.e., ∆q = 0. In this case, we can see
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from Eq. (9.21) that β takes the value β = π/(2`c), leaving us with

a(B)
p (z) = a(B)

p (0) cos

(
π

2

z

`c

)
− ia(B)

s (0)

√√√√v
(B)
s

v
(B)
p

eiφ sin

(
π

2

z

`c

)
,

a(B)
s (z) = a(B)

s (0) cos

(
π

2

z

`c

)
− ia(B)

p (0)

√√√√v
(B)
p

v
(B)
s

e−iφ sin

(
π

2

z

`c

)
.

(9.22)

Assuming that we have an input field into the pump mode (a
(B)
p (0) 6= 0, a

(B)
s (0) = 0), the

power evolution of each mode is given by

P (→)
p (z) = P (→)

p (0) cos2

(
π

2

z

`c

)
, P (→)

s (z) = P (→)
p (0) sin2

(
π

2

z

`c

)
, (9.23)

where we have used P (z) = ~ωv |a(z)|2 to calculate the power from the field amplitudes

[172], and we have used ‘(→)’ to denote ‘forward’ (phase-matched) propagation. We can see

that full conversion between the two spatial modes is achieved after a propagation length `c,

as seen in Fig. 9.3(a), which depends inversely on the amplitude of the acoustic field (`c ∝

|b|−1). In the case of optical driving (i.e., with a PPER scheme), the acoustic field amplitude

is proportional to the optical powers in the ‘emit’ waveguide, `c ∝ (a
(A)
p a

(A)
s )−1, as seen from

Eq. (9.4). However, our description here can also describe other transduction mechanisms.

For example, in the case of piezoelectric acoustic driving [236, 330], the conversion length

will be determined by the RF power, as `c ∝ (PRF)−1/2.

Next, we turn to analyze the case where the process is not phase-matched, such that

∆q`c � π. In this limit, Eq. (9.21) can be simplified to β ≈ ∆q/2, leaving us with negligible

mode conversion

P (←)
p (z) ≈ P (←)

p (0), P (←)
s (z) ≈ P (←)

s (0). (9.24)

Here, we have used ‘(←)’ to denote ‘backward’ propagation, where the process is not phase

matched.

Examining cases of intermediate phase mismatch, we see from Eq. (9.21) that ∆q`c

is a key parameter that governs mode conversion. Fig. 9.3 shows the calculated power

evolution in the two optical modes for different cases of phase mismatch, showing that the
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dba c

Figure 9.3: (a) In the case of perfect phase matching, after a propagating length of `c, all
of the pump power will be mode converted. (b) For a phase mismatch of ∆qback = π/`c,
only 50% of the power can be converted. (c) For a large phase mismatch, the conversion
efficiency will be very low, showing small deviations from the input power. (d) Calculated
mode-converted power for different values of phase mismatch.

phase mismatch must be small to achieve efficient mode conversion. For example, ∆q`c < π

is required to achieve at least 50% of power transfer.

We can see that the inter-modal process, implemented using the NIBS device, enables

the necessary phase-matching conditions to achieve mode conversion only in one propagation

direction. Choosing the input frequency to be phase-matched in the forward direction (for a

given acoustic drive and system parameters), the forward conversion efficiency of a device of

length L will be η2
f = sin2(πL/(2`c)). In the backward direction, the conversion efficiency

η2
b will be determined by the phase mismatch ∆q, using Eqs. (9.19) and (9.20). With

this notation, we can write the output power of the mode-converted light as P
(→)
s (L) =

η2
f P

(→)
p (0), and P

(←)
s (L) = η2

bP
(←)
p (0). A system with a substantial nonreciprocal response

(ηf � ηb) can be used to implement an optical isolator, as illustrated in Figs. 9.4(a,b).

An important practical consideration in the design of isolators based on mode conversion,

is the performance of mode multiplexers used to interface the two spatial modes in the active

regions of the device. Using the mode multiplexer design from Ref. [65] as an example, we

model non-ideal mode multiplexing with a transmission parameter (t) for the anti-symmetric

mode, where power conversion from the initial to the final mode is given by t2 (an ideal

mode multiplexer implies t = 1). We assume that the fundamental (symmetric) mode does

not suffer significant loss in the multiplexing process (see Figs. 9.4(a,b)).
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Figure 9.4: Using a NIBS device for optical isolation. We assume the acoustic field is
driven externally, and analyze the optical transmission through the ‘receive’ waveguide, at
an optical frequency that is phase-matched only in the forward direction. (a) Scheme (a):
Mode-converted light is used for forward transmission (top). The low conversion efficiency
in the backward direction results in optical isolation (bottom). (b) Scheme (b): Non-
converted light is used for transmission (top). In the isolation direction, mode conversion
removes the optical field from the signal path. (c) Calculated performance of the two
isolation schemes as a function of the nonreciprocal efficiency contrast, for three cases of
mode-conversion efficiency: 1% (top), 50% (middle), and 99% (bottom). We assume mode
multiplexers with t2 = 80% mode-multiplexing efficiency in this calculation.
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9.3.1 Isolation schemes

We will analyze the performance of two different optical isolation schemes utilizing a NIBS

device. To facilitate our discussion, we will denote the input optical power into the isolator

Pin, and the output powers when operating in the forward and backward direction as Pout

and Piso, respectively, as illustrated in Figs. 9.4(a,b). Two important figures of merit for

an optical isolator are the insertion loss (Pout/Pin) and isolation ration (Pout/Piso) [136].

An ideal isolator will have unity transmission Pout/Pin = 1 and a high isolation ratio

Pout/Piso →∞ (equivalent to no backward transmission Piso = 0).

The first isolation scheme we will consider, denoted ‘Scheme (a)’, uses the mode-

converted light for transmission, as seen in Fig. 9.4(a), such that the transmitted op-

tical power in the forward and backward directions are given by Pout = η2
f t

2Pin and

Piso = η2
bt

2Pin, respectively. Another possible isolation scheme, denoted ‘Scheme (b)’ and

shown in Fig. 9.4(b), uses the unconverted light in the transmission direction, and uses the

mode-conversion process for isolation. In this case, the forward and backward transmission

are given by Pout =
(
1− η2

b

)
Pin and Piso =

(
1− η2

f

)
Pin, respectively. The insertion loss

and isolation ratio of the two schemes are given by

Scheme (a):
Pout

Pin
= η2

f t
2,

Pout

Piso
=

(
ηf

ηb

)2

,

Scheme (b):
Pout

Pin
= 1− η2

b,
Pout

Piso
=

1− η2
b

1− η2
f

.

(9.25)

Fig. 9.4(c) shows the calculated transmission and isolation for three cases of mode-conversion

efficiency (ηf = 1%, 50%, and 99%) for the two isolation schemes. We can see that for low

efficiency (such as was demonstrated in Ref. [139]) Scheme (a) can yield a high isolation

ratio (as long as ηf � ηb), while Scheme (b) is not feasible, as the isolation ratio is very low.

However, assuming higher mode-conversion efficiency could be achieved, Scheme (b) can be

utilized for isolation and may outperform the first in the case of non-negligible backward

mode conversion. Additionally, Scheme (b) does not require mode converters, as the device

is interfaced only through the fundamental mode (see Fig. 9.4(b)), which can drastically
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simplify the design and reduce footprint. In this case, the necessary mode filtering of the

anti-symmetric mode can be achieved by tapering the width of the multi-mode waveguide

to the point that it is single-mode, and does not require additional components.

Finally, we note that throughout this section, our objective was to spatially separate

the forward and backward propagating fields to achieve a practical scheme for nonreciprocal

operation. However, if we analyze the basic form of the scattering matrix associated with

inter-modal scattering, spatial separation is not necessary to have nonreciprocity. Using

a generalized scattering matrix formalism [136, 332, 333], waves with different frequencies

are assigned separate ports, even in the case that they are propagating in the same spatial

mode. Within this framework, a time-modulated system is considered reciprocal only if

any two modes i and j, which may differ by their spatial mode, polarization, or oscillation

frequency, are related by symmetric scattering matrix elements (i.e., sji = sij for any i

and j). Applying this definition, we see that any form of inter-modal scattering breaks

reciprocity.

For example, we consider the case of a NIBS device with phase matching conditions

satisfied in both propagation directions (i.e., ∆qbackL < π, or equivalently, ηf ≈ ηb), which

can be the case for a device with a short active length. In this scenario, an input tone at

frequency ωi results in an output field shifted in frequency ωj = ωi − Ω0, which we define

as modes i and j, respectively. In the reverse direction, mode j will also be frequency-

shifted through the inter-modal scattering process to frequency ωj − Ω0 6= ωi. We can

see from this example that the generalized scattering matrix is not symmetric (sji 6= sij),

such that the system is not reciprocal under this generalized definition. To utilize such

a nonreciprocal system practically, additional filters are required to separate the different

frequency components to different physical ports [330]. This can be challenging, especially

when the frequency separation between modes is small.

In our discussion of optical isolation throughout this chapter, we have considered non-

reciprocity as determined by the total power entering and exiting the different ports, re-

gardless of their frequency. Hence, for this more practical definition, a substantial phase

mismatch between forward and backward propagation is crucial for the type of isolator that
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we are analyzing. In the next sections, we will explore possible strategies to enhance the

potential performance of isolators based on the schemes we have been discussing so far.

9.3.2 Dispersion engineering

In the previous section, we have seen that optical mode conversion is determined by the

phase-matching conditions in a NIBS device and that the optical transmission approxi-

mately follows a sinc2(·) function (see Eq. (9.7)). The operation bandwidth of the device

(∆λ) is inversely proportional to the difference in group indices ∆ng = |n+−n−| (or equiv-

alently, the dispersion properties of the modes), as can be seen from Eq. (9.14). The

optical dispersion is determined by the waveguide material and geometry, and minimizing

∆ng can be achieved by modifying the waveguide design and material properties [334–340].

Analyzing the optical dispersion relations (see for example Fig. 9.1(b)), minimizing ∆ng

is equivalent to the requirement that the dispersion curves of the two optical modes have

similar slopes2. Furthermore, since the bandwidth is inversely proportional to the active

length ∆λ ∝ 1/L (see Eq. (9.14)), long devices (which may be needed to achieve high

efficiency) may require the enhancement of the bandwidth through dispersion engineering

to produce a useful operation bandwidth.

We demonstrate the possible bandwidth enhancement by comparing the bandwidth of

a device similar to the one demonstrated experimentally in Ref. [139], and an alternative

waveguide design with a lower group-index mismatch. Fig. 9.5(a) shows the waveguide

design from Ref. [139], and the symmetric and anti-symmetric TE-like optical mode profiles,

simulated using a mode solver. The simulation results give a difference of group indices

∆ng = 0.11, in good agreement with measurements. The calculated transmission of this

NIBS device in the forward and backward directions is shown in Fig. 9.5(b), showing

similar features to the measured nonreciprocal response of such devices. An alternative

waveguide design is illustrated in Fig. 9.5(c), where the dimensions of the guiding ridge are

smaller and the ridge sidewalls have a 65◦ angle. Simulating this geometry, the difference

2. The slopes of the dispersion curves are described by the group velocities. The operation bandwidth is
increased when the group velocities of the two modes are similar, since ∆λ ∝ c/[n+−n−| = (v+v−)/|v+−v−|,
where n± and v± denote group indices and ground velocities, respectively.
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Figure 9.5: (a) Dimensions of the ridge waveguides used in NIBS measurements, and sim-
ulated x component of the electric field for the first two optical modes supported by the
waveguide. (b) Calculated transmission as a function of wavelength shows the phase-
matching sinc2(·) response in the forward and backwards directions. (c) An alternative
ridge waveguide design with reduced ridge dimensions and angled sidewalls, resulting in
a tenfold reduction in the difference of group indices (∆ng). (d) Calculated transmission
using the waveguide shown in panel (c). The reduction of ∆ng increases the bandwidth by
a factor of 10. Adapted from Ref. [139].

in group indices is calculated to be ∆ng = 0.01, a tenfold reduction compared to the first

device design. The calculated transmission response of the modified device is illustrated in

Fig. 9.5(d), showing a tenfold increase in bandwidth, covering the entire telecom C-band

wavelength range.

9.3.3 Gain apodization

We have seen how the optical transmission as a function of wavelength follows a sinc2(·)

function due to the phase-matching conditions in the NIBS device. This response is char-

acteristic of a uniform Brillouin coupling rate along the length of the device, as seen from

Eqs. (9.6) and (9.7) and illustrated in Fig. 9.6(a). The optical transmission exhibits trans-
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mission side-lobes 16 dB below maximum transmission that may limit the isolation of the

device, as side-bands of the backward direction may coincide with the forward transmission

bandwidth, seen in Fig. 9.6(b). Alternatively, by controlling the Brillouin gain along the

propagation axis of the device, the phase-matched optical transmission can be manipulated.

Following the derivation from Section 9.1, the scattered field is described by

a(B)
s (z) =

1

v
(B)
s

χ∗a(B)
p a(A)

p

†
a(A)

s

∫ L

0
dz′ g(A)(z′) g(B)∗(z′) e−i∆qz

′
, (9.26)

where we have allowed for spatially varying Brillouin coupling rates in waveguide A and

B, denoted g(A) and g(B), respectively. We can see that the mode-converted field is in fact

the spatial Fourier transform of the product of the coupling rates. Hence, by varying the

coupling rates in space we can engineer the phase-matched optical response to improve

isolation and nonreciprocal contrast. This strategy is analogous to an apodization function

in filter design, where a tapered window function is used to suppress side lobes of the filter

response [341,342].

As an example, we consider the case where the ‘emit’ waveguide has a constant coupling

rate, while the ‘receive’ waveguide is designed to have a spatially varying coupling rate,

as illustrated in Fig. 9.6(c). The calculated mode-converted transmission is shown in Fig.

9.6(d), where we can see a large reduction in the side-lobe amplitude, resulting in ∼60 dB of

contrast between forward and backward transmission. Practically, the Brillouin gain may be

modulated by changing the waveguide design along the optical propagation axis, however,

the effect of these changes on the Brillouin frequency and optical dispersion —which we

have assumed constant in this analysis— must be considered in the design.

9.4 Resonant enhancement

We have seen in Section 9.3 that the optical mode-conversion efficiency is determined by the

acoustic field amplitude and acousto-optic coupling rate. In recent demonstrations, a mode-

conversion efficiency of 1% was demonstrated using an optical drive (i.e., using a PPER

device) and an active length of 2.39 cm [139]. Alternatively, piezoelectric transduction
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Figure 9.6: (a) Brillouin coupling rate g(B) along the optical propagation direction, in a
2 cm long NIBS device. (b) The corresponding transmission for forward and backward
propagation through the ‘receive’ waveguide of the device. (c) In an apodized device, the
coupling rate is modulated throughout the device length. (d) The resulting transmission
response shows a reduction of the side lobes, enabling a larger nonreciprocal contrast be-
tween forward and backward transmission.

can be used to generate coherent acoustic waves with higher power. Early demonstrations

using piezoelectric materials have shown TE–TM mode conversion [343–347], however, these

devices required long acousto-optic interaction lengths and high electrical power to achieve

high-performance mode conversion. More recently, 10% of mode conversion between two

TE-like spatial modes was achieved by cascading multiple transduction section [236], and

18% was demonstrated in a lithium niobate platform [330]. In this section, we will explore

the possibility of utilizing a doubly-resonant structure to enhance the effective interaction

length of the optical and acoustic fields, and achieving higher mode-conversion efficiency.

We have shown earlier how strong nonreciprocity is achieved for an active length L �

c/[Ω0(n+ + n−)], which in the silicon platform demonstrated in Ref. [139] results in a

minimum length of L ≈ 3 mm.

To achieve high mode-conversion efficiency (and nonreciprocal response) with low power
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consumption and within a small-footprint device, resonant structures can be used to en-

hance performance [136]. Resonant inter-modal Brillouin devices in silicon have been used

to demonstrate lasers [56] and amplifiers [66, 285], utilizing the resonant buildup of opti-

cal power within a ring resonator, suggesting the feasibility of this scheme. Additionally,

nonreciprocal devices using resonant structures have been demonstrated in other material

platforms, showing promising results when using this strategy [329,348].

An example of a resonant device is illustrated schematically in Figs. 9.7(a,b), where

a ring resonator is used as the ‘receive’ path of a NIBS device. In this example, a mode

selective coupler (labeled ‘1’ in the figure) is used to inject light into the symmetric mode

of the resonator. In the active section, interaction with the acoustic field scatters light into

the anti-symmetric mode, which then exits the ring through another mode-selective coupler

(labeled ‘2’ in the figure). In the reverse direction, phase mismatch results in inefficient inter-

modal scattering, as we have analyzed in Section 9.1, suppressing transmission and achieving

optical isolation. The acoustic field can be driven using the same ‘emit’ configuration as

in Figs. 9.1(c,e), or alternatively, using an RF drive in combination with a piezoelectric

material [236] or through thermo-elastic effects [237]. For the rest of our analysis, we will

assume that a constant acoustic field drives the inter-modal scattering process; we will not

concern ourselves with the details of phonon generation.

9.4.1 Mode-conversion efficiency

We start our analysis of the resonant structure by making the analogy to a system of two

ring resonators, as illustrated in Fig. 9.7(c). In this analogy, each ring corresponds to a

distinct spatial mode, and the optical properties, namely the effective index, group index,

and optical loss of each ring, corresponds to the equivalent values of the spatial modes

in the multi-mode system. The acousto-optic coupling produced within the active region

(illustrated in green in Figs. 9.7(a,b)) is modeled by introducing optical coupling between

the two ring resonators. We denote the round trip losses aj = exp[−αjLr/2], where αj is the

loss per unit length of mode j = {1, 2}, and Lr is the length of each of the ring resonators.

Finally, each mode accumulates a round-trip phase φj = 2πn
(j)
e Lr/λj , determined by the
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Figure 9.7: (a) Resonantly enhanced nonreciprocal mode converter in the transmission
direction, where the acousto-optic process is phase matched. (b) In the reverse direction,
there is no mode conversion, resulting in optical isolation. (c) Left: We can analyze the
system as coupled ring resonators, each representing a different spatial mode. Right: The
notation used to describe the coupling ratio of each directional coupler. (d) Calculation
of the optical frequency response using typical system parameters. We use the notation
s11 = sout

1 /sin
1 and s21 = sout

2 /sin
1 . In this example, η2 = 0.005, F1 = 103 and F2 = 17. The

intrinsic losses of the ring resonators are α1 = 6 m−1, α2 = 15 m−1. (e) Magnified view
of the shaded region from panel (d), showing 78% of power conversion through the system
(−1 dB). Temporal coupled-mode theory (TCMT) calculations are in good agreement. (f)
Temporal coupled-mode analysis, where α represents the energy stored in a mode, and sin

(sout) is the power flowing into (out of) each mode. (g) Left: Mode-conversion efficiency
as a function of resonator finesse. Right: Mode-conversion efficiency as a function of single-
pass coupling. The case of no intrinsic loss (i.e., α1 = α2 = 0) is shown for reference. (h)
Mode-conversion efficiency as a function of resonator finesse and single-pass coupling. The
dashed line follows the function π/η, showing that maximum mode conversion occurs close
to the condition η2 = π2/(F1F2).
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effective index (n
(j)
e ) and wavelength (λj).

We can write a self-consistent set of equations describing the relations between the field

amplitudes at different points in the coupled-ring system (see Fig. 9.7(c))

sA = (it1) sin
1 +

(
r1

√
a1eiφ1

)
sB, sB =

(√
1− η2

√
a1eiφ1

)
sA +

(
−iη

√
a2eiφ2

)
sC,

sC = (it2) sin
2 +

(
r2

√
a2eiφ2

)
sD, sD =

(√
1− η2

√
a2eiφ2

)
sC +

(
−iη

√
a1eiφ1

)
sA.

(9.27)

Here, r and t denote the splitting ratio of the directional couplers interfacing the rings,

assumed to be lossless (r2 + t2 = 1), and the acousto-optic conversion per round trip is

denoted η. The field amplitudes at the two output ports are given by

sout
1 = (r1) sin

1 +
(
it1
√
a1eiφ1

)
sB, sout

2 = (r2) sin
2 +

(
it2
√
a2eiφ2

)
sD. (9.28)

In the forward direction, we assume an input into mode 1 (sin
1 6= 0, sin

2 = 0). Solving

Eqs. (9.27) and (9.28), we have

sout
1 = sin

1

[
r1 + p2a1e

iφ1 − r1 (p1 + p2)
√

1− η2 − a1e
iφ1t21

√
1− η2

1− (p1 + p2)
√

1− η2 + p1p2

]
,

sout
2 = sin

1

[
iηt1t2

√
a1eiφ1a2eiφ2

1− (p1 + p2)
√

1− η2 + p1p2

]
,

(9.29)

where we have grouped the terms

p1 = r1a1 exp [iφ1] , p2 = r2a2 exp [iφ2] . (9.30)

To gain insight into the resonantly-enhanced mode conversion, we simplify the expression

by assuming that the internal losses are low compared to the coupling losses (a ≈ 1). Addi-

tionally, we consider the case where both modes are on resonance with the ring resonators,

i.e., the wavelengths λj (j = {1, 2}) are chosen such that φj = 2πmj , where mj are inte-

gers, and that their frequency separation equals the Brillouin frequency3 [56, 66]. We also

3. The frequency shift imparted by the inter-modal acousto-optic scattering process is the Brillouin fre-
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assume that the single-pass mode-conversion efficiency is low (η � 1), as we are analyzing

the resonant enhancement of weak acousto-optic coupling. Under these assumptions, the

output power from port 2 has the form

∣∣∣∣sout
2

sin
1

∣∣∣∣2 =

[
η t1t2

(1− r1) (1− r2)

]2

≈ 4

π2
η2F1F2, (9.31)

where we have expressed the mode-converted power in terms of the finesse F = πr1/2/(1−r)

of each cavity modes, and used the approximation (1 + r)/r1/2 ≈ 2 for r ≈ 1.

We see that for high-finesse resonators, i.e., structures in which the optical fields prop-

agate multiple round trips before decaying, the conversion efficiency can be enhanced

quadratically. Figs. 9.7(d,e) show the mode-converted power (|sout
2 /sin

1 |2) exiting the output

port, demonstrating 78% of mode conversion when using realistic system parameters4. For

this case, Fig. 9.7(g) shows the mode-converted power as a function of cavity finesse (F) and

single-pass acousto-optic mode conversion (η). Interestingly, maximum mode conversion oc-

curs when the coupling rate and cavity finesse are balanced, such that η2 ≈ π2/(F1F2), as

seen in Fig. 9.7(h). It is important to note that the mode conversion in this example is

limited due to the intrinsic loss within the resonators; in the case of lossless resonators (i.e.,

α1 = α2 = 0) the mode conversion can reach 100%, as seen from the dashed curves in Fig.

9.7(g).

9.4.2 Temporal coupled-mode theory

An alternative way to describe the system we are analyzing is using temporal coupled-mode

theory [349, 350]. Here, the mode amplitudes αj (j = {1, 2}), related to the stored energy

in each of the resonators as |αj |2, are completely described by coupling rates and resonant

angular frequencies (these αj should not be confused with the notation we had for loss in

the previous section). The coupling of the two mode amplitudes, illustrated in Fig. 9.7(f),

quency Ω0, i.e., |ω1 − ω2| = Ω0, where ωj = 2πc/λj .

4. In this calculation we have used α1 = 6 m−1, α2 = 15 m−1 and a single-pass mode conversion of
η = 0.5%.
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is given by the following equations of motion

∂
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√
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2 + i

√
2

τ2
α2.

(9.32)

Here, ω0
j denotes the resonant frequency, 1/τ0

j , 1/τj are the amplitude decay rates due to

intrinsic loss and external coupling, and κ denotes the coupling rate between the two spatial

modes due to the acousto-optic interaction. The waves flowing in and out of each mode

are sin
j and sout

j , respectively, where |s|2 represents power. Here, all parameter are given

in terms of rates, whereas in our previous analysis (Section 9.4.1) the coupling parameters

were unitless.

Analyzing the system in the frequency domain [350], considering optical fields at fre-

quencies ω1 and ω2, we have5

[
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1
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+

1
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1
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√
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√
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+
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+
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√
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2 + i

√
2

τ2
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(9.33)

Considering the transmission through the system, with an input wave entering port 1 (sin
1 6=

0, sin
2 = 0), we can solve Eq. (9.33), yielding

sout
1 = sin

1

[
1−

(
2

τ1

)
χ1

1 + |κ|2 χ1χ2

]
sout

2 = sin
1

[
i

(
2

√
τ1τ2

)
κ∗χ1χ2

1 + |κ|2 χ1χ2

]
,

(9.34)

where we have denoted

χj =

[
i
(
ω0
j − ωj

)
+

1

τj
+

1

τ0
j

]−1

, j = {1, 2}. (9.35)

We repeat the approximations we had in Section 9.4.1, assuming that the intrinsic loss

5. In the frequency domain, we have ∂tα1 → −iω1 and ∂tα2 → −iω2.
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is much smaller than the coupling loss (τ0
2 � τ2, τ0

1 � τ1), and that the single-pass acousto-

optic coupling is weak (τ2τ1|κ|2 � 1). In this limit, we obtain6

∣∣∣∣sout
2

sin
1

∣∣∣∣2 = 4 |κ|2 τ2τ1. (9.36)

To compare this with our previous analysis (Eq. (9.31)), we relate the coupling coefficient

η to the rate κ using κ = η(v1v2)1/2/Lr, where vj (j = {1, 2}) is the group velocity, and Lr

the ring length. The factor (vj/Lr)
−1 represents the round-trip time of each mode, and in

this way, we relate the single-pass mode-conversion efficiency to a coupling rate. Finally, by

using the definitions of the free spectral range (FSR), full-width at half-maximum bandwidth

(∆ω), and finesse (F), given by

FSR = 2π
v

Lr
, τ =

2

∆ω
, F =

FSR

∆ω
, (9.37)

we arrive at the same result as with the two-ring calculation, |s21|2 = (4/π2)η2F1F2.

With temporal coupled-mode theory, we have formulated the problem in the spirit of

mean-field analysis where the modes are fully described in the time domain. We see that

this treatment produces excellent agreement with our previous analysis (Section 9.4.1) in

the limit when a mean-field analysis is appropriate (i.e., small acousto-optic scattering

per round trip and low intrinsic losses). Fig. 9.7(e) presents calculations using temporal

coupled-mode theory, showing good agreement with the two-ring model. This method

yields fast results, accurate estimates, and is the method of choice for many of these types

of calculations. However, it is restricted to the analysis around a limited bandwidth, as it

does not take into account multiple resonator longitudinal modes (as seen in Fig. 9.7(d)). It

is also important to note that coupled-mode theory assumes reasonably high quality-factor

resonances, which should be considered when modeling the system.

6. This result is equivalent to the cooperativity between the two optical modes.
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9.5 Second-order acoustic frequency response

In our discussion up to this point, we have only considered the optical transmission and mode

conversion in an inter-modal PPER operation using a NIBS device. For these applications,

the acoustic mode is used to scatter light between two optical spatial modes, and the

acoustic frequency response does not play a substantial role in the process. In fact, this

only requires a monochromatic acoustic drive, which can be designed to be on resonance

with the acoustic mode to maximize efficiency. However, the NIBS device can be used for

additional signal processing operations, such as the filtering and sensing applications we

have discussed in previous chapters, with intriguing different properties. For example, the

inter-modal process yields single-sideband scattering [65], as the phase-matching conditions

result in a process involving the energy transfer between two optical tones.

In filtering applications, the single-sideband nature of the device eliminates the band-

width limitations of a tunable PPER-based filter that were discussed in Chapter 7. In a

tunable PPER-based filter utilizing this single-sideband process, an optical tone used as

a local oscillator will select the filter pass-band frequency with no distortion from other

unwanted frequency components, i.e., with no ‘image’ frequency [288] (see Section 7.4.1

and Fig. 7.5). The elimination of these limitations can enable the design of a filter that

could process arbitrary input signals, and tuned over a large spectral range. Such a de-

vice could be used not only for wideband microwave spectral analysis but could also be

utilized as an optical spectrum analyzer (OSA), as the pass-band frequency can be tuned

over optical-scale (∼THz) frequency ranges.

Utilizing Brillouin scattering for spectral analysis has had great success in providing

high-resolution measurements over large wavelength ranges, typically using backward Bril-

louin scattering in long segments of optical fiber [351,352]. There have been demonstrations

of tailoring the spectral response in backward Brillouin processes, utilizing multiple pump

tones to induce both gain and loss at selected frequencies, achieving an order-of-magnitude

enhancement in spectral resolution [353, 354]. Utilizing the vectorial nature of Brillouin

scattering can further enhance the resolution and the dynamic range by using polarizers to
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Figure 9.8: Simulations of the optical and acoustic fields in a two-pole PPER structure. (a)
The x component of guided optical fields, showing the fundamental mode (top) and first
anti-symmetric mode (bottom) supported by the rib waveguide. (b) The x component of
the displacement profile of the Brillouin-active acoustic mode (top) and the corresponding
Sxx strain tensor element (bottom). (c) The x component of the displacement profiles of
the two acoustic ‘super-modes’ supported by the two-pole PPER structure. The phononic
crystal is a cubic lattice of air holes, with pitch a = 0.55 µm and hole diameter d = 0.43 µm.

filter out noise [244,355]. The devices presented here could enable such high-resolution spec-

tral analysis to be implemented in an integrated silicon platform, using sub-millimeter-long

devices. Furthermore, designing devices with a multi-pole frequency response will have the

advantage of a sharp frequency roll-off, enhancing the possible resolution of such filtering

schemes without the need for additional components.

The design principle of the two-pole inter-modal device is similar to those discussed

earlier in Chapter 6. We design a suspended rib waveguide, comprised of a 215 nm silicon

layer in which 85 nm are etched to define a ridge structure. The ridge is designed to

guide two optical TE-like modes, as seen in Fig. 9.8(a). The rib structure also supports

a guided acoustic mode, seen in 9.8(b), with an anti-symmetric strain profile, needed to

couple the two optical modes through forward inter-modal Brillouin scattering [65]. Using

a phononic crystal structure, comprised of a cubic lattice of air holes in the silicon layer,

we can acoustically couple the two acoustic waveguides, while keeping the optical modes
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separated, as was described in Section 6.3. The acoustic coupling results in symmetric and

anti-symmetric acoustic super-modes, shown in Fig. 9.8(c), consistent with the theoretical

analysis presented in Chapter 3. The coherent interaction of the two acoustic modes yields

a two-pole frequency response

χ(2 pole) (Ω) =
iµ

[Γ/2 + i (Ω0 − µ− Ω)] [Γ/2 + i (Ω0 + µ− Ω)]
, (9.38)

where Ω0 and Γ are the Brillouin frequency and phonon dissipation rate in each of the acous-

tic waveguides, respectively, and µ is the acoustic coupling rate. The two-pole frequency

response results in a sharp frequency roll-off compared to a typical Lorentzain response

which is obtained by a single acoustic mode.

Measurements of the frequency response of a two-pole device are presented in Fig.

9.9(c), showing a center frequency of 5.74 GHz and a full-width at half-maximum (FWHM)

of 4.4 MHz. Comparing the two-pole frequency response to that of a single-pole device,

seen in Fig. 9.9(e), shows an improvement of 20 dB in out-of-band rejection at frequencies

30 MHz from the center of the passband, thanks to the sharp roll-off of the multi-pole

lineshape. Additionally, phononic band engineering enables the suppression of unwanted

acoustic modes. When analyzing a wider frequency range, seen in Fig. 9.9(d), we can see

that there are no spurious modes within a 4 GHz span around the pass-band, in contrast to

the single-pole device which does not utilize a phononic crystal structure and shows multiple

acoustic modes, as seen in Fig. 9.9(b). Additionally, the device shows 22 dB of sideband

contrast, as shown in Fig. 9.9(f).

We characterize the device by performing both acoustic and optical frequency sweeps,

presented in Fig. 9.10. In these measurements, the RF frequency Ω determines the fre-

quency at which we are driving the acoustic modes through the ‘emit’ waveguide, and the

wavelength λ refers to the optical wavelength of the light injected into the ‘receive’ waveg-

uide. As seen in Figs. 9.10(b,e), the device demonstrates nonreciprocal optical transmission,

with a bandwidth ∆λ = 3.1 nm and a separation of δλ = 2.8 nm between the forward and

backward phase-matched wavelengths. All together, the data shows how a two-pole line-
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Figure 9.9: (a) Measured frequency response of a single-pole NIBS device, with a center
frequency of Ω0/(2π) = 5.68 GHz and an acoustic dissipation rate Γ/(2π) = 8.37 MHz. (b)
A wider frequency span reveals other strong inter-modal Brillouin-active acoustic modes
within ∼ 400 MHz of the main peak. (c) The frequency response of a two-pole device with
a center frequency Ω0/(2π) = 5.74 GHz, acoustic dissipation rate of Γ/(2π) = 6.12 MHz
and an acoustic coupling rate µ = 0.89 MHz. (d) The two-pole device shows no spurious
modes within a 4 GHz frequency span. (e) A comparison of the frequency response from
panels (a) and (c), showing the fast frequency roll-off of the two-pole device. (f) Heterodyne
measurement of the two-pole NIBS device shows 22 dB of sideband contrast.
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Figure 9.10: Characterization of a two-pole NIBS nonreciprocal modulator, with an active
length of L = 5.5 mm. (a) Forward transmission, sweeping the driven phonon frequency
Ω in the ‘emit’ waveguide, and the optical wavelength in the ‘receive’ waveguide (λ). (b)
Optical power, corresponding to the dashed horizontal line from panel (a), with peak trans-
mission at 1551 nm, and a bandwidth of ∆λ = 3.08 nm. The dashed red line shows the
backward optical transmission for reference. (c) Acoustic frequency response, correspond-
ing to the dashed vertical line from panel (a), showing a two-pole lineshape with a full-width
at half-maximum (FWHM) of 4.4 MHz. (d) Backward transmission measurement of the
same device. (e) Optical power, demonstrating the nonreciprocal response, where peak
transmission is shifted by δλ = 2.8 nm (dashed horizontal line from panel (d)). The dashed
blue line shows the forward optical transmission for reference. (f) Acoustic frequency re-
sponse (dashed horizontal line from panel (d)). The experimental setup used to measure
the data is illustrated in Fig. 9.11.
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Figure 9.11: Schematic illustration of the experimental setup used for the characterization of
the inter-modal nonreciprocal devices. (a) Forward transmission measurement. The pump
and Stokes tones in the ‘emit’ waveguide are synthesized from the same laser at optical
frequency ω1. An RF frequency source driving an intensity modulator (IM) at frequency Ω,
followed by an optical bandpass filter (BPF) to select a single sideband, is used to generate
the Stokes tone at frequency ω1 −Ω. Light from a second laser source at optical frequency
ω2 is directed to the fundamental mode of the ‘receive’ waveguide of the device, and the
mode-converted field is collected at the output. The same light source is used to perform
self-heterodyne detection, using an acousto-optic modulator (AOM). (b) In the backward
direction, the input and output ports of the ‘receive’ waveguide are switched.

shape can be obtained using an inter-modal PPER device showing single-sideband scatter-

ing. This demonstrates the feasibility of designing filters which could potentially be tuned

over a large spectral range to process both microwave and optical signals. The experimental

setup used to measure the data presented in this section is illustrated in Fig. 9.11.

9.6 Conclusion

In this chapter, we have analyzed the dynamics of inter-modal photonic-phononic emit-

receive (PPER) operations and studied the nonreciprocal response which can be achieved

through their unique phase-matching conditions. Specifically, we have presented different
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schemes in which the device can be used to implement optical isolation. By examining the

dependence of optical transmission on the dispersion properties of the device, we identified

potential designs that could increase the bandwidth and isolation ratio, making the non-local

inter-band Brillouin scattering (NIBS) device a potential strategy for future technologies.

We have demonstrated the potential for high-efficiency mode conversion within a small-

footprint device using the resonant enhancement of the optical fields within a multi-mode

resonator. While this could potentially yield near-unity conversion efficiency, the trade-off of

this scheme is the reduction in transmission bandwidth. This is because large enhancement

requires high finesse cavities, which will have a narrow transmission band, and will restrict

the operation bandwidth of the device. For example, a typical ring resonator in silicon may

have a bandwidth of ∼500 MHz [66,285], much narrower compared to the phase-matching

limited bandwidth of a non-resonant device, which can be on the order of ∼100 GHz [139],

or potentially even larger (> 1 THz), as was shown in Section 9.3.2.

Alternatively, high-efficiency NIBS devices could be achieved by driving the acoustic

field with an electromechanical transducer rather than using optical driving. For example,

direct RF transduction can be achieved by using piezoelectric materials and interdigital

transducers (IDT) to drive acoustic waves and achieve higher transduction efficiencies [236,

330]. Another intriguing concept for generating high-frequency phonons is by utilizing the

thermoelastic expansion effect using metal gratings on the silicon layer [237]. The PPER

scheme utilizing optical driving of the acoustic fields does however have advantages, such as

wavelength-tunable phase matching, which would be difficult to obtain using IDTs with fixed

geometry. The symmetry in the PPER design between the ‘emit’ and ‘receive’ waveguides

also enables the design of devices with long interaction lengths, not limited by the finite

aperture of an IDT. Since the driven optical field is proportional to the driving optical power,

the design of high power-handling devices can be another potential direction to achieve high-

performance isolators. In silicon photonics at telecom wavelengths, nonlinear loss limits the

power-handling capabilities of devices. To achieve higher power handling, active free-carrier

sweeping can be implemented [259]; alternatively, operation at longer optical wavelengths

(λ > 2.1 µm) eliminates two-photon absorption (TPA), as well as TPA-induced free-carrier
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absorption (FCA), which will drastically reduce nonlinear losses [356]. Another strategy

to enable high Brillouin gain in silicon is through the design of new waveguide geometries,

which are optimized for higher power handling, discussed further in Chapter 10.

We have experimentally demonstrated how we can design an inter-modal PPER device

with multi-pole acoustic frequency response. The sharp frequency roll-off, together with the

suppression of spurious modes through the use of a phononic stop-band, can enable filtering

schemes with ∼MHz resolution. The single-sideband nature of the inter-modal scattering

process could enable such filters to be tuned over wide spectral ranges for use in microwave-

photonic systems, or for optical spectral analysis. In our proof-of-concept experiments, we

have demonstrated 22 dB of single-sideband relative suppression, however, similar devices

have shown that ∼40 dB of sideband contrast could be possible [139].

The dependence of the optical response on the dispersion parameters of the waveguides

could potentially be utilized for sensing, where small perturbations to the waveguide geom-

etry can be translated to measurable signals. As we have seen in our analysis, the optical

dispersion properties of the waveguides directly affect the phase-matching conditions, which

can result in large, measurable changes in the output signal. For example, a perturbation of

5 nm in the waveguide width of a NIBS device results in the shifting of the phase-matched

optical wavelength by ∼10 nm [139]. This high sensitivity to perturbations, together with

the high signal-to-noise ratio possible with the PPER scheme, may enable the design of

sensors with high spatial resolution, which could be used to detect changes in material

properties.

In conclusion, utilizing inter-modal Brillouin scattering —taking advantage of its non-

local nature and unique phase-matching properties— may open the door to the design of

novel devices and signal processing schemes. Future work in dispersion engineering tech-

niques, power handling, and efficient acousto-optic interactions could potentially lead to

high-impact filtering, isolation, and sensing technologies.
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Towards power-scalable

Brillouin-active devices

10.1 Introduction

Throughout the experimental demonstrations in this work, we have used a silicon-on-

insulator (SOI) platform, enabling us to design versatile Brillouin-active devices while utiliz-

ing mature and robust fabrication methods. Silicon is one of the leading material platforms

to implement integrated-photonic systems thanks to the well-developed infrastructure of

CMOS fabrication facilities, the ability to integrate electronic circuits on the same chip.

Additionally, the large refractive index contrast between the silicon and oxide layers, en-

ables strong guiding of optical modes [46, 48, 62]. However, the nonlinear loss mechanisms

in silicon limit the amount of power that can be processed on-chip, as the optical absorption

increases at high intensities. Moreover, since high intensities are required to achieve strong

nonlinearities, such as Brillouin scattering, the trade-off between gain and loss needs to be

taken into account when designing devices that operate at high optical powers.

In this chapter, we focus on possible strategies to enable higher power-handling capabil-

ities than currently available in Brillouin-active silicon devices. As we have seen in previous

chapters, the performance of many Brillouin-based applications is determined by the amount

259
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of power we can deliver to the device. For example, in Chapter 5 we saw how in the context

of a microwave-photonic link, higher optical power results in a lower noise figure and larger

dynamic range, and in Chapter 9 we showed that nonreciprocal behavior of devices utilizing

inter-modal scattering is more efficient at higher optical powers. Additionally, higher power

could enable high-gain amplifiers [64], and low-threshold lasers [56].

In the following sections, we will analyze waveguide designs that could enable higher

power handling by utilizing geometries that have a larger optical mode area, reducing the

field intensity and nonlinear loss. We analyze the trade-off between gain and nonlinear loss,

and present waveguide designs that could potentially lead to high-performance Brillouin

devices. Another strategy we consider is the distribution of Brillouin gain between multiple

identical Brillouin-active sections, and coherently summing the processed signals. We show

how this can be implemented by integrating Brillouin-active waveguides within a Mach-

Zehnder interferometer (MZI). Such devices could potentially enable higher power handling,

with the additional advantage that the pump and signal waves can be directed to separate

ports, eliminating the need for pump-wave filtering.

10.2 Nonlinear loss in silicon devices

In silicon waveguides operating at telecom wavelengths (∼1550 nm), power handling is lim-

ited by nonlinear loss, restricting integrated optical circuits of the type presented in this

work to maximum power handling of ∼100 mW [63–65,357]. The nonlinear loss mechanisms

are two-photon absorption (TPA) and free-carrier absorption (FCA), with losses that scale

with the square and the cube of optical intensity, respectively. In a two-photon absorp-

tion process, an electron is excited from the valence band to the conduction band by the

absorption of two photons. This phenomenon is related to Kerr nonlinearity and can be

described in terms of the imaginary part of the nonlinear refractive index [62, 356]. Free

carrier absorption describes the process of intra-band transitions through light absorption,

which depends on the steady-state free-carrier generation rate and lifetime [358].

Taking into account linear and nonlinear losses, the spatial evolution of the optical
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intensity of a wave propagating in a silicon waveguide can be described by [359]

∂

∂z
I = −αI − βTPAI

2 − γFCAI
3. (10.1)

Here, α is the linear loss coefficient, βTPA is the TPA loss coefficient of the material, and the

FCA loss coefficient is given by γFCA = σFCAβTPAτ0/(2~ω), where τ0 is the carrier lifetime,

σFCA is the electron scattering cross section, and ω is the optical frequency [359]. For a

guided mode with an effective mode area Aeff [360], we can rewrite Eq. (10.1) in terms of

optical power (P ∝ I/Aeff), such that

∂

∂z
P = −αP −

(
βTPA

Aeff

)
︸ ︷︷ ︸

β

P 2 −
(
σFCA βTPA

τ0

2~ω
1

A2
eff

)
︸ ︷︷ ︸

γ

P 3, (10.2)

where we have defined normalized nonlinear loss coefficients (β and γ), showing how the

effects of nonlinear loss are reduced for a larger effective mode area (β ∝ A−1
eff and γ ∝ A−2

eff ).

To analyze the effect of these loss mechanisms in the context of Brillouin-active systems,

we will consider the example of small-signal Brillouin amplification, where a strong pump

tone, with power Pp, is used to amplify a weak Stokes signal with power Ps (i.e., Ps � Pp).

The Stokes wave spatial evolution can be described by [361]

∂

∂z
Ps = GBPsPp − αPs − 2βPsPp − γPsP

2
p , (10.3)

where we see the Brillouin gain GB scales the same as TPA with optical power, as they are

both χ(3) optical nonlinearities. While this simple model does not take into account pump

depletion and anti-Stokes scattering, it is sufficient to describe the process of small-signal

Brillouin amplification [64]. By designing waveguides with a larger optical mode area, we

can significantly decrease the effects of nonlinear loss, enabling higher pump powers and

stronger Brillouin interactions. However, the increase in the mode area will also reduce

the Brillouin gain and a careful analysis needs to be performed when designing high-power

devices.
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10.3 Multi-ridge waveguide design

As we explore structures that could yield improved performance, we begin by considering

new Brillouin-active structures that distribute the optical field into multiple identical op-

tical waveguide modes, which all couple to a common Brillouin-active phonon mode. By

distributing the same phase-coherent light-field between these waveguides —which can also

be viewed as the spatially-extended optical super-mode of the multi-waveguide structure—

a larger effective mode area is achieved. Our objective is to investigate designs that pro-

duce larger effective mode areas without degrading the Brillouin gain. This can be achieved

by placing the optical waveguides (i.e., the guiding ridges) in locations that maximize op-

tomechanical coupling to an individual phonon mode. Throughout this chapter we consider

similar ridge structures to the ones presented in Chapter 6, with a height of 85 nm on a

single silicon membrane of thickness 130 nm (see Fig. 6.3), permitting Brillouin interactions

with a common phonon mode supported by this system, as seen in Fig. 10.1.

As a first analysis, we will set the guiding acoustic membrane width to be constant,

and estimate the performance of devices with a different number of ridge waveguides. To

achieve strong Brillouin scattering, the symmetries of the acoustic and optical modes need to

be considered. Here, we will analyze the case for forward intra-modal Brillouin scattering

(FSBS) utilizing the fundamental optical mode (symmetric in space), which requires an

acoustic mode with an anti-symmetric displacement profile. By placing the optical-guiding

regions at locations where the optical forces interfere constructively (i.e., with the correct

symmetry), it is possible to achieve a larger mode area, while leaving the Brillouin gain

mostly unchanged. Fig. 10.1 shows the simulation results of the electric and acoustic

fields for devices with a different number of optically-guiding ridges, while the width of

the acoustic membrane is kept constant. Calculating the Brillouin gain expected for the

different acoustic modes supported by the structures, we see that in all cases, the strongest

interaction is with the same acoustic mode at a frequency around 4.45 GHz and a similar

value for Brillouin gain.

Next, using the simulated electric field distributions, we calculate the expected nonlinear
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Figure 10.1: Simulations of Brillouin-active devices with multiple optical guiding ridges. In
all cases, the acoustic-guiding membrane is 7 µm wide, and the optical ridges are 1 µm
wide, with a separation of 1 µm between ridges. Panels (a), (b) and (c) show devices with
one, two and three ridges, respectively. Top: The optical field |E| and the x component
of the displacement profile (ux) of the strongest Brillouin-active acoustic mode. Middle:
Calculated Brillouin gain GB of the simulated acoustic modes of the structure. Bottom:
Brillouin gain measurements of fabricated devices. Calculated small-signal amplification as
a function of pump power for these structures is shown in Fig. 10.2.

Table 10.1: Calculated nonlinear loss coefficients of multi-ridge waveguide designs.

Parameter Single ridge Two ridges Three ridges Four ridges Description

α (m−1) 4.1 4.1 4.1 4.1 Linear loss [64]

β (W−1m−1) 49.9 24.9 18.4 18.1 TPA coefficient1

γ (W−2m−1) 2400 598 325 263 FCA coefficient1

Aeff (µm2) 0.236 0.472 0.640 0.779 Mode area
1 See Table 10.2 for the parameters used to obtain these values.
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loss coefficients for devices with different numbers of ridge waveguides, as seen in Table 10.1.

Using Eqs. (10.1) and (10.3), we calculate the small-signal Brillouin amplification that such

devices could yield, as seen in Fig. 10.2(f). We can see that these multi-ridge devices have

the potential to yield a tenfold increase in small-signal amplification and power handling

relative to the single-ridge device. The parameters used throughout the calculations in this

chapter are on par with those of recent experimental demonstrations [64, 65], summarized

in Table 10.2.

An intriguing feature of this design is that it also produces suppression of spurious

acoustic modes. When confining acoustic modes in the suspended waveguides using slots

(acting as ‘acoustic mirrors’), multiple long-lived modes are supported by the structure,

which can all have strong Brillouin gain. The spurious modes, seen in Fig. 10.1(a), can

be a source of noise and loss in Brillouin-based applications. These can be suppressed by

using a phononic crystal structure to engineer the acoustic modes in the system, as was

discussed in Chapter 6. However, the multi-ridge structures presented here provide an

alternative path towards such spur suppression. The effect of using multiple optical guiding

ridges can be understood by analyzing the spatial profiles of the acoustic modes, and their

overlap with the optical fields. The optical forces in the device, which are determined by

the spatial distribution of the optical fields, interfere constructively when driving certain

acoustic modes, and cancel out for others. Effectively, the number of spurious Brillouin-

active modes in the system is reduced, as can be seen in the Brillouin-gain simulation

Table 10.2: Parameters used for nonlinear loss calculations.

Parameter Value Description

Ps(0)/Pp (dB) −30 Stokes to pump ratio at input

λ (nm) 1550 Optical wavelength

Q 500 Acoustic Q-factor

L (mm) 30 Device length1

βTPA (W−1m) 7.9 · 10−12 TPA coefficient [362]

σFCA (m2) 1.45 · 10−21 FCA cross section [358]

τ0 (ns) 2 Free-carrier lifetime [64]
1 We assume that the Brillouin-active length is the same as the device
length.
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results presented in the middle row of Fig. 10.1. As a proof-of-concept, Brillouin gain

measurements were carried out on such devices. We can see the suppression of spurious

modes while retaining similar gain for an acoustic mode at 4.2 GHz, as seen in the bottom

row of Fig. 10.1.

While the designs presented so far enabled the distribution of the optical power —with

the added benefit of spur suppression— they require a wide acoustic membrane to support

multiple optical ridges. The wider device results in a larger acoustic mode area, which
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Figure 10.2: (a–d) Simulations of Brillouin-active devices with multiple optical guiding
ridges. The optical ridges are 1 µm wide, with a separation of 1 µm between ridges for
all devices. The acoustic membrane widths are 3 µm, 5 µm,7 µm, and 9 µm, respectively.
(e) Calculated small-signal Brillouin gain for the four device designs as a function of pump
power in the presence of linear and nonlinear loss. (f) Calculated small-signal Brillouin
gain as a function of pump power in the presence of linear and nonlinear loss for the three
devices from Fig. 10.1.
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reduces the Brillouin gain, as the acoustic power of the phonon mode is spread out over

a large region. As our next step, we estimate the Brillouin gain for multi-ridge devices,

without the constraint of a constant acoustic membrane width, as shown in Fig. 10.2(a–d).

Now, the devices that have fewer ridges also have a smaller acoustic membrane and exhibit

higher Brillouin gain. We calculate the potential small-signal amplification of these devices

using Eqs. (10.1) and (10.3), as shown in Fig. 10.2(e). We can see that out of the four

designs, the two-ridge structure exhibits the largest small-signal amplification.

It is important to note, that these large-mode devices can be challenging to fabricate,

as they require a large suspended region which can suffer from the built-in compressive

stress in the SOI platform [277, 278], which can lead to deformations and even to devices

breaking altogether. These challenges can potentially be addressed through the integration

of materials with controllable stress to counteract the forces in the silicon layer [363,364].

10.4 Brillouin-active Mach-Zehnder interferometers

An alternative strategy to enable high power-handling Brillouin devices is to split the op-

tical power between several separate Brillouin-active waveguides in parallel and coherently

combine the amplified signals. Such devices can be achieved by designing Brillouin-active

regions within a balanced Mach-Zehnder interferometer (MZI). This interferometric scheme

could enable higher power handling, as the optical power within each waveguide is lower,

resulting in the reduction of nonlinear loss. An additional benefit from this design is the

possibility to separate pump and signal waves into separate ports of the interferometer. The

separation of pump and signal waves can be challenging in forward Brillouin devices, where

both waves co-propagate in the same spatial mode, and are separated in frequency by only

a few GHz, as illustrated in Fig. 10.3(a).

The Mach-Zehnder Brillouin-active device, illustrated schematically in Fig. 10.3(b),

consists of three sections; a directional coupler at the input splitting the optical field into

two separate paths, followed by a Brillouin gain region on each one of the branches of the

interferometer, and a second directional coupler at the output, combining the amplified
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fields. We start by describing the operation of a directional coupler, splitting the optical

power equally between its two output ports, using the transfer matrix [198]

E′top

E′bot

 =
1√
2

1 i

i 1


E(in)

top

E
(in)
bot

 =
1√
2

E(in)
top + iE

(in)
bot

iE
(in)
top + E

(in)
bot

 , (10.4)

where the subscripts ‘top’ and ‘bot’ refer to the upper and lower branches of the interfer-

ometer. Here, E′ denoted the field after the directional coupler and E(in) denotes the input

fields at the input ports of the coupler. Next, we can describe the Brillouin-active regions,

where a small-signal Stokes tone with field amplitude as(z) experiences amplification given

a

Brilloun gain region

b
Pump

PumpSignal

Amplified 
signal

0 0.5 1 1.5 2

P
p
 (W)

0

5

10

15

(d
B

)

Single ridge

1
2
4

Gain regions

0 1 2 3 4 5

P
p
 (W)

0

10

20

(d
B

)

Two ridges

1
2
4

Gain regions

Pump

Signal Pump

Amplified 
signal

ω

P

Amplified signal

ω

PumpSignal

P

c

d

e

Figure 10.3: Comparing the potential performance of MZI Brillouin-active devices. (a)
A single Brillouin-active region. (b) A Mach-Zehnder interferometer with two Brillouin-
active regions in parallel. (c) Two Mach-Zehnder interferometers in parallel with four
Brillouin-active regions. (d) Calculated small-signal Brillouin amplification for the three
device schemes in panels (a–c) as a function of pump power, in the presence of linear
and nonlinear loss. (e) Calculated small-signal Brillouin amplification for the same three
devices, assuming each gain region is a two-ridge Brillouin-active section, as seen in Fig.
10.2(b).
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by [172]

as(L) = as(0)

(
1 +

1

2
GBPpL

)
. (10.5)

Here, L is the length of the Brillouin-active gain region, GB denotes the Brillouin gain, and

we assume a strong, undepleted pump with power Pp.

Using Eqs. (10.4) and (10.5) we can analyze the field amplitudes in an MZI-Brillouin

device, of the type shown in Fig. 10.3(b). We inject a strong pump tone (with a field

amplitude ap) into the top port of the device and a small Stokes signal into the bottom

port E(in)
top

E
(in)
bot

 =

 ap

as(0)eiΩ0t

 , (10.6)

where Ω0 denotes the Brillouin frequency, by which the two optical tones are separated.

After the first directional coupler, these fields become

E′top

E′bot

 =
1√
2

ap + ias(0)eiΩ0t

iap + as(0)eiΩ0t

 , (10.7)

and after propagating through the gain regions (assuming an undepleted pump) we have

E′′top

E′′bot

 =
1√
2

ap + ias(L)eiΩ0t

iap + as(L)eiΩ0t

 . (10.8)

From Eq. (10.5) we know that as(L) = as(0)[1 + GBPpL/4], where the reduction in the

amplification (by a factor 2) is the result of having half the pump power in each of the

Brillouin-active amplifying regions. Finally, we calculate the field amplitudes at the device

output, after the second directional coupler

E(out)
top

E
(out)
bot

 = i

as(0) [1 +GBPpL/4] eiΩ0t

ap

 , (10.9)

revealing that the pump and signal waves now exit distinct ports of the interferometer.

We note that the gain is half of that achieved by a Brillouin amplifier of the same length
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(compare to Eq. (10.5)). This is a consequence of the fact that Brillouin amplification

scales linearly with the pump power, and in the MZI structure, only half of the pump

power propagates in each gain section. However, similar to the multi-ridge devices analyzed

in Section 10.3, the reduction in power within each segment results in lower nonlinear losses,

and overall enhanced power handling, as seen by the calculations presented in Fig. 10.3(d).

We can see that although the maximum gain does not change when comparing a single

Brillouin-active waveguide (Fig. 10.3(a)) and the MZI-Brillouin device (Fig. 10.3(b)),

however, the gain is achieved at a higher pump power. This is important when amplifying

larger signals, where pump depletion will limit the amplifier operation1. For example, if our

objective is to perform small-signal amplification, (e.g. boost a signal with power P
(in)
s = 1

µW to P
(out)
s = 10 µW), a single Brillouin-active waveguide could provide gain using a

pump power of Pp ≈ 100 mW. In this case, the signal is much smaller than the pump

throughout the amplification process (i.e., P
(out)
s � Pp). However, if we want to boost

a signal from P
(in)
s = 5 mW to P

(out)
s = 50 mW, this cannot be accomplished using a

single waveguide segment since much higher pump powers are necessary for amplification,

requiring high power-handling Brillouin devices.

The Mach-Zehnder Brillouin-active scheme can be extended, implementing more gain

regions in parallel by designing arrays of interferometers, as illustrated schematically in Fig.

10.3(c). Such designs could have the potential to support high optical powers (Pp > 1 W),

as splitting the power into multiple regions further reduces nonlinear loss2. Furthermore,

using multi-ridge waveguides (such as were discussed in Section. 10.3) within the MZI

scheme may enable even higher power handling and permit large Brillouin gain in silicon,

as shown in the calculations seen in Fig. 10.3(e).

Finally, we note that throughout our analyses we have neglected complexities and addi-

1. For example, using the parameters presented in this chapter, a single Brillouin-active waveguide (Fig.
10.3(a)) will result in the amplified signal experiencing 1 dB of compression (compared to the case of an
undepleted pump) when Ps/Pp ≈ 4%, where Ps and Pp are the signal and pump powers at the amplifier
input.

2. As we have seen in the single MZI analysis (Eq. 10.9), splitting the pump power between more Brillouin-
active sections will also result in a smaller small-signal gain for the device, as can be seen from the slopes of
the calculated gain for the different devices in Fig. 10.3(d) at low pump power.
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tional linear and nonlinear losses that can be produced by waveguides and couplers within

this system. However, in practice, losses from other components such as directional couplers

and grating couplers must be considered.

10.4.1 Spontaneous Brillouin scattering

We turn to analyze the spontaneous scattering occurring in such an MZI-Brillouin device.

At non-zero temperature, the acoustic modes are occupied by thermally-excited phonons,

which scatter the pump field into Stokes and anti-Stokes sidebands, as was described in

Chapter 2. In practical applications, this is essentially excess noise added by the Brillouin

process. Following the derivation from Chapter 2 and Ref. [172], the amplitude of the

scattered pump into the Stokes sideband, after an interaction within a single Brillouin-

active region of length L, is given by

as(L, t) = − i
v
g∗ap

∫ t

0
dt′
∫ L

0
dz η†(z, t′)e−(t−t′)Γ/2, (10.10)

where v is the optical group velocity, g is the acousto-optic coupling rate, and Γ is the

acoustic dissipation rate. Here, η(z, t) is a stochastic term to account for the thermal

Brillouin fluctuations, with zero mean (〈η(z, t)〉 = 0) and a two-time correlation function

given by 〈η†(z, t)η(z′, t′)〉 = nthΓδ(z − z′)δ(t − t′). The number of thermal phonons is

denoted nth and follows a Bose-Einstein distribution nth = [exp (~Ω/kBT )− 1]−1, where

T is the temperature, and kB is the Boltzmann constant. Calculating the total scattered

power from a pump with power Pp into the Stokes sideband, we have

PN = ~ωv〈a†sas〉 =
1

4
GBPpLΓ~ω(nth + 1). (10.11)

In an MZI-Brillouin device, we can calculate the Brillouin noise power using Eqs. (10.8)–

(10.11), and follow a similar derivation to the one we did for the amplified signal. Alterna-

tively, we can understand this directly by inspecting Eq. (10.11), and noting that the noise

scales linearly with the pump power, such that in each of the two MZI optical paths, only

half the noise power will be produced. Taking both Brillouin-active regions into account,
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the same amount of spontaneous scattering will occur compared to a single Brillouin-active

region. However, since spontaneous scattering is an incoherent process, and the thermal

phonons in each active region are uncorrelated, the spontaneous-scattering induced side-

band will be split evenly between the two outputs of the interferometer. The noise power

at the interferometer output ports is given by

P (top)
N

P
(bot)
N

 =

GBPpLΓ~ω(nth + 1)/8

GBPpLΓ~ω(nth + 1)/8

 , (10.12)

where we can see that at each of the ports, only have half the noise power will be measured

compared to a single gain region of the same length (see Eq. (10.11)). Hence, for the same

optical powers, the noise power exiting the signal output port (top port in Fig. 10.3(b))

will be half of that produced by a single Brillouin-active device (Fig. 10.3(a)). While the

noise exiting the signal port is lower, the gain is also reduced (see Eq. (10.9)), and the noise

figure of the amplifier should be analyzed carefully, taking into account all of the system

parameters. A similar analysis can be carried out for the 4-port systems of the type seen in

Fig. 10.3(c), resulting in another twofold reduction in the noise power exiting each of the

four output ports.

10.4.2 Experimental proof-of-concept

As a proof-of-concept, we fabricated MZI Brillouin-active devices in a standard silicon-

on-insulator platform, illustrated schematically in Fig. 10.4(a). The directional couplers

were implemented using multi-mode interference (MMI) sections, seen in Figs. 10.4(b,c),

where the coherent interference of multiple optical modes is used to achieve directional

coupling with an equal power-splitting ratio. The MMI dimensions are 10 × 125 µm, and

1 µm wide waveguides are used as the input and output ports. A calculation of the field

distribution within the MMI region is shown in Fig. 10.4(e). Further discussion of the

MMI design process can be found in Appendix A. The Brillouin-active regions follow the

design from Ref. [64], and are comprised of an 85 nm ridge defined in a 215 nm silicon

layer, suspended over an active-region of L = 7 mm to enable strong forward Brillouin
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Figure 10.4: (a) A schematic illustration of the MZI-Brillouin device. The dark shaded
regions represent the Brillouin-active sections of the waveguides. (b) Micrograph of a
fabricated device, showing one of the directional couplers and part of the Brillouin-active
regions. The inset shows a magnified view of the active region. (c) Magnified view of
the MMI directional coupler. (d) Measured wavelength response of the MZI. (e) Top:
Simulated electric field distribution within the MMI used for directional coupling. The
dashed lines mark the edges of the device. Bottom: Simulated electric field at the input
(left) and output (right) planes of the MMI, showing equal power distribution between the
two output waveguides, and a π/2 relative phase.

interactions. Integrated grating couplers were used to couple light on and off the chip.

First, we analyze the performance of the balanced Mach-Zehnder interferometer. We

direct a tunable laser into port 1 (as denoted in Fig. 10.4(a)), and measure the output power

from ports 3 and 4 as a function of optical wavelength, as seen in Fig. 10.4(d). We see a

40 nm bandwidth with ∼15 dB of contrast between the two ports, and specific wavelengths

showing >30 dB. This sweep was performed at low optical power (∼100 µW on-chip) such

that nonlinear loss and heating effects are negligible.

Next, we perform a Brillouin gain measurement, using the experimental setup illustrated
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in Fig. 10.5(a). A laser source is split and used as a pump directed into port 1, and a small

signal (−30 dB lower power than the pump) is synthesized using an intensity modulator

and an optical bandpass filter. Using an optical switch, the signal can be directed to either

port 1 or 2, as illustrated in Figs. 10.5(b,c). A second optical switch is used to select the

output light from either port 3 or 4, which is combined with an optical local oscillator to

perform a self-heterodyne measurement.

a

b c d
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Figure 10.5: (a) Schematic illustration of the experimental setup used to measure the
MZI-Brillouin device. VOA: variable optical attenuator, EDFA: erbium-doped fiber ampli-
fier, RFSA: radio-frequency spectrum analyzer, PC: polarization controller, BPF: optical
band-pass filter, IM: intensity modulator, AOM: acousto-optic frequency shifter. (b) Mea-
surement of an MZI-Brillouin device, injecting the pump and signal into the same port. The
Brillouin peak is centered around Ω0/(2π) = 4.21 GHz and has a linewidth of Γ0/(2π) = 7.91
MHz. (c) Measurement of the same device, when injecting the pump and signal into sep-
arate input ports. The Brillouin peak is centered around Ω0/(2π) = 4.21 GHz and has
a linewidth of Γ0/(2π) = 8.02 MHz. The measured output optical power is 29 dB lower
compared to that from panel (b). (d) Measurement of a single Brillouin gain region for ref-
erence, showing a Brillouin peak at Ω0/(2π) = 4.21 GHz and a linewidth of Γ0/(2π) = 7.22
MHz.
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We measure the Brillouin gain in two configurations. In the first configuration, the

pump and signal are directed into the same port, as seen in Fig. 10.5(b). In the second

configuration, the pump and signal are directed into separate input ports, as seen in Fig.

10.5(c). We see that in both cases the gain spectrum is practically identical, yielding

0.374 dB of amplification, at a frequency of 4.21 GHz and linewidth of 8 MHz. These

measurements were done with an estimated pump power of 24 mW on-chip, and a Brillouin

gain of 1000 (Wm)−1 in each of the suspended regions, consistent with Ref. [64]. The

measurements in Fig.10.5(b) are noisier, as our switching scheme resulted in a tenfold

reduction in the signal input power for this configuration, however, we see the small-signal

gain is unaffected. The measured output powers were 2.022 mW and 2.29 µW for the traces

in Figs. 10.5(b) and 10.5(c), respectively, demonstrating 29 dB of power suppression when

implementing the pump-separation scheme. We repeated the measurement with a higher

pump power of 35 mW on-chip, yielding a small-signal gain of 0.55 dB. At these higher pump

powers, the interferometer performance is degraded, reducing the pump suppression to 18

dB. For comparison, we measure a device consisting of a single gain region with the same

Brillouin-active design on the same chip. As seen in Fig. 10.5(d), this device yields the same

frequency response and higher gain, as expected from our earlier analysis, demonstrating

that the Brillouin frequency response is not affected when utilizing gain regions within an

interferometer.

This proof-of-concept experiment demonstrates the feasibility of the MZI Brillouin-

active devices, showing how spatially separated Brillouin active regions can be used within

an interferometer. The degradation in performance of the devices could be avoided by

implementing phase shifters and tunable couplers to stabilize the interferometer. Actively-

stabilized devices will result in strong pump suppression at higher optical powers and could

achieve high-power Brillouin amplification with minimal signal distortion. Furthermore, the

device presented here was fabricated using electron-beam lithography, which can suffer from

drift, resulting in fabrication imperfections. Fabrication of these devices using photography,

as was discussed in Chapter 6, could result in devices with better performance.
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10.5 Conclusion

In this chapter, we have explored possible strategies to enable high power handling silicon

devices through the design of waveguides with larger mode areas. We have analyzed this in

the context of forward intra-modal Brillouin scattering, however, the same concepts can be

used when considering other forms of nonlinear interactions in silicon, such as inter-modal

Brillouin scattering, Kerr, and Raman nonlinearities. As we have seen, the larger mode area

results in lower Brillouin gain as well as lower nonlinear losses. By analyzing this trade-off

we were able to show potential higher power-handling performance compared with previous

demonstrations. Furthermore, while we have examined small-signal amplification as an

example where higher power handling enhances device performance —potentially achieving

a tenfold increase in amplification— these capabilities can be highly advantageous to other

Brillouin-based applications in silicon, including lasers, filters, and modulators.

Another strategy for high power-handling devices is processing signals in multiple Brillouin-

active regions in parallel. We presented an amplifier design utilizing Brillouin-gain segments

within a Mach-Zehnder interferometer, which also enables the separation of the pump and

signal tones at the device output. The distribution of gain to multiple spatially separated

regions reduces the optical power propagating in each waveguide, and while this reduces

the amplifier linear gain, it also suppresses nonlinear loss and could enable overall higher

power handling. Our proof-of-concept experimental demonstration shows the feasibility of

such schemes, achieving 29 dB of pump suppression at the signal output port. Such high

power-handling amplifiers could be used for the amplification of larger input optical sig-

nals, where pump depletion can degrade the linearity of the system. By using higher pump

powers, which could be possible with this new class of devices, the amplified signal can

remain much smaller than the pump power throughout the amplification process, yielding

high-power, low-distortion amplification.

The use of a standard silicon platform could enable the integration of active electronics

on-chip to achieve stronger pump suppression. The fluctuations in the passive balanced

interferometer used in our demonstration limited the performance of the device. By in-
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tegrating active heaters, for example, the interferometer could be stabilized and enable

high pump suppression at higher optical powers. Additionally, other active elements, such

as integrated P-I-N junctions to perform carrier sweeping, could further reduce nonlinear

loss [365]. Such active devices have been fabricated at Sandia National Laboratories3 MESA

facilities and could be a path towards high-power silicon devices. Finally, these strategies

could utilize resonantly-enhanced Brillouin gain regions to achieve higher gain and smaller

device footprint [66]. These schemes could open the door to a new class of high-power am-

plifiers, lasers, filters, and isolators, expanding the possible capabilities of integrated silicon

devices.

3. Sandia National Laboratories is a multi-program laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly-owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA-0003525. This dissertation describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in this work do not necessarily represent the views of the U.S. Department
of Energy, or the United States Government.
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Conclusion

In this dissertation, we have set out to study the intriguing properties of forward Brillouin

scattering, and how they can be utilized to develop novel photonic devices. The nonlo-

cal nature of the scattering process enabled us to design systems where the interactions

between multiple coherent acoustic waves give rise to multi-pole frequency responses, typi-

cally unattainable in Brillouin devices. Building on basic device physics, we have described

the performance of microwave-photonic filtering schemes based on this principle, and stud-

ied the fundamental sources of noise and signal distortion that degrade signal fidelity in such

systems. The narrowband acoustic frequency response, combined with the large-bandwidth

optical platform, enables the design of high-resolution widely-tunable filters, difficult to

obtain with optical or microwave technologies alone.

The theoretical analysis and experimental demonstrations presented in this work point

at a new strategy for optical and microwave-photonic signal processing, with a vastly dif-

ferent design space compared to other schemes. For example, acoustic mode engineering, in

combination with the long lifetime of acoustic waves, enables spectral resolution previously

unattainable in integrated devices. The optical separation of the input signal and output

signal, by using an ‘emit-receive’ scheme, leads to low-noise operation and avoids technical

issues such as pump rejection and unwanted optical nonlinearities. Furthermore, the forward

geometry of the scattering we have studied here enables the design of cascaded systems,

without the need for circulators and isolators, which could enable novel signal-processing
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and sensing schemes.

Experimentally, we designed and fabricated devices implementing these nonlocal in-

teractions in a standard silicon platform, using standard CMOS-compatible fabrication

methods, and demonstrated microwave-photonic bandpass and notch filtering operations

with record-narrow spectral resolution and a wideband tunability. Additionally, we ex-

plored future directions for these signal-processing schemes, utilizing the unique properties

of inter-modal Brillouin scattering, and enhancing the performance of silicon devices by

enabling higher power handling.

The ability to integrate Brillouin-active waveguides in a standard silicon platform opens

the door to the design of complex systems, utilizing a wide range of available photonic and

electronic components, on the same chip. For example, light sources, detectors, modula-

tors, and resonators can all be integrated together with Brillouin-active regions to produce

high-performance devices within a small footprint. The use of active electronic control of

the photonic circuits, using integrated heaters, for example, may enable further tailoring

of the acoustic modes in the system. Moreover, the device schemes presented here can be

combined with other recently developed Brillouin technologies such as lasers and amplifiers,

to expand possible capabilities. It is also important to note that while our experimen-

tal demonstrations focused on silicon at telecom wavelengths, the concepts presented here

could be implemented in other material platforms —as Brillouin interactions are present in

practically any material— as well as different optical wavelengths.

One of the main limitations of Brillouin-based systems is the noise added by thermally-

excited acoustic modes, resulting in spontaneous scattering of light. Designing devices op-

erating at higher acoustic frequencies could reduce this noise source. Another strategy is to

operate Brillouin devices in cryogenic temperatures, which will drastically reduce Brillouin

noise and has the potential of vastly increasing Brillouin gain. Operating optomechani-

cal devices in cryogenic conditions is routinely performed over the past decade and could

be implemented with the devices presented here. Furthermore, recent demonstrations of

quantum operations using optomechanical devices suggest that the schemes presented in

this work could be used within the context of quantum measurement and quantum signal
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processing.

The analyses and experiments presented here have enabled us to show a path towards

low-noise and low-distortion performance for forward Brillouin-based signal-processing tech-

nologies. In addition to bringing greatly enhanced performance to silicon photonics, we

demonstrated reliability and robustness, key milestones necessary to transition silicon-based

optomechanical technologies from the scientific bench-top to field-deployable devices. The

results presented in this dissertation are another step towards foundry-compatible, fully-

integrated photonic systems, which can be the basis for new high-impact technologies.
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Multi-mode interferometers

In this section, we will describe the principle of operation of multi-mode interference devices,

and outline design strategies to utilize them in photonic devices. For example, the direc-

tional couplers demonstrated in Chapter 10 implemented such structures for the splitting

and combining of light within a Brillouin-active Mach-Zehnder interferometer.

The basic concept of multi-mode interference (MMI) devices utilizes the propagation

of coherent optical fields in multiple guided spatial modes —each with a different propa-

gation constant— such that their interference pattern changes along the propagation axis.

By carefully choosing the geometry of the multi-mode section and the location of input

and output ports, we will show how many photonic devices can be implemented. MMI

devices can be simulated using commercial software packages, with finite-difference meth-

ods especially suited for such calculations. However, it is useful to consider semi-analytical

calculations, which yield fast results and give additional insight and intuition to the design

process. While these calculations neglect some processes occurring in the device, such as

reflections and loss, they give good estimates of device performance and can serve as a

starting point for further optimization.

Multi-mode wave propagation

We begin our analysis by describing the structure illustrated in Fig. A.1(a), consisting of a

narrow waveguide, used as in input port, connected to a wide waveguide, and followed by a
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third narrow section, which is the output port of the system. We assume the length along

the z axis of each section to be much larger than the optical wavelength in the material,

such that we can treat each section separately as a waveguide with translation invariance.

Throughout our analysis, we will consider a single polarization, such that we can treat the

fields as scalar, defined by their spatial profile along the x axis. Finally, we assume the

geometry of all sections is identical along the y axis (out-of-plane), which is the case in

many integrated-photonic platforms.

As an example, we launch a monochromatic field in the first mode of the input port,

denoted Ein(x) and illustrated in red in Fig. A.1(a). The wide MMI section supports

multiple guided modes, as illustrated in blue in the figure. We can treat the field from the

input port as an initial condition exciting the modes of the MMI section, and decompose

the input field into a linear combination of guided MMI modes and radiating modes

Ein(x) =
M−1∑
m=0

cmφm(x) + frad, (A.1)

where φm(x) is the mth guided mode of the MMI wide section, and we assume there are

M such guided modes. The term frad accounts for the fact that the MMI modes are not a

complete basis, and some of the field at the MMI input couples to non-guided modes and

is practically lost. The coefficients cm are given by the overlap integral of the input field

distribution and each one of the normalized modes

cm =

∫
dx φ∗m(x)Ein(x),

∫
dx |φm(x)|2 = 1. (A.2)

Next, we can write the field within the MMI at a distance z from the input, using the

propagation constant βm corresponding to each of the guided modes

E(x, z) =
M−1∑
m=0

cmφm(x)eiβmz. (A.3)

The output of the MMI, illustrated in green in Fig. A.1 (a), can be calculated by an overlap

integral of the fields at the end of the MMI section (after propagating a distance L) and
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the guided modes of the output waveguide

an =

∫
dx ϕ∗n(x)E(x, L),

∫
dx |ϕn(x)|2 = 1, (A.4)

where we have denoted ϕn(x) as the nth mode of the output waveguide. Finally, the total

field at the output will be given by summing over all guided modes in the output waveguide

Eout(x) =
N−1∑
n=0

anϕn(x). (A.5)

We see that in this simple model of propagation, in order to compute the fields prop-

agating and interfering in the MMI we need to find the mode profiles in each one of the

sections of the device and their corresponding propagation constants. This can be done

using commercial mode solvers, however, in the spirit of numerical estimations, we will

describe methods that can be calculated using common programming languages, yielding

fast results and good estimates, after which further optimization can be performed.

a b Propagation constant c

min

max

Figure A.1: (a) A schematic illustration of an MMI structure, showing a single mode
at the input waveguide, a multi-mode region, and an output waveguide. (b) Simulated
propagation constants of a 7 µm wide MMI device. The guiding region is 215 nm of silicon,
while the ‘cladding’ is 130 nm thick, on a buried oxide layer. A quadratic function (∝ m2)
fits well to the simulated values. (c) Simulated mode profiles of the first six guided modes
of the structure, corresponding to the propagation constants from panel (b).
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Calculating guided modes as eigenstates of the geometry

We can describe the guided mode profiles in each translationally-invariant region of the

device using the 1D Helmholtz equation [366]

[
∂2

∂x2
+ n2

eff(x)k2
0

]
φm(x) = β2

mφm(x), (A.6)

where neff = ncore in the guiding region, and neff = nclad outside of this region, in the effec-

tive ‘cladding’. This one-dimensional ‘effective index’ model is useful for many photonics

applications, where the full 3D geometry can be simplified and effectively projected into

one dimension (not including the propagation axis). More details about the effective index

method can be found in Appendix B.

Inspecting Eq. (A.6), we see that it is an eigenvalue problem, where we need to find

the eigenvectors and eigenvalues of the operator Ô =
[
∂2
x + n2

eff(x)k2
0

]
. This can be done

numerically by discretizing the x axis and writing the operator as a matrix. A numerical

approximation of the second derivative can be written as

∂2

∂x2
f(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2), (A.7)

where h is the disretization step along the x axis, and we have used a central-difference

scheme. We can use this to write the operator Ô in matrix form

Ô =
1

h2



−2 1

1 −2 1

. . .

1 −2 1

1 −2


+ k2

0



n2
clad

. . .

n2
core

. . .

n2
clad


, (A.8)

where we assume all matrix elements that are not specified are zero. Now, we can numeri-

cally calculate the eigenvalues βm and eigenfunctions ψm(x) of the operator Ô. Note that

we will get more eigenmodes than the number of guided modes (as many as there are rows
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or columns in the matrix), and we can use the criteria β2
m ≥ n2

cladk
2
0 to find the indices (m)

corresponding to guided mode. Since Ô is a Hermitian operator (Ô† = Ô), its eigenvalues

β2 will all be real numbers, as expected for lossless propagation constants, and the eigen-

functions φm(x) will be orthogonal. With these parameters in hand, we can now use Eqs.

(A.1)–(A.4) to calculate the fields propagating in the structure.

Closed-form approximation

Alternatively, it is possible to approximate the modes and propagation constants analyti-

cally, which can make the calculation even faster, as well as give interesting observations

into the interference of the fields as they propagate in the structure.

Assuming the modes are well-confined in the structures, the eigenmodes in the multi-

mode region can be approximated as [367]

φm(x) ≈
√

2

We
sin

[
π(m+ 1)

We
x

]
, m = 0, 1, 2 . . . (A.9)

in the region x ∈ [0,We]. Here, We is the effective width of the mode, given by [368]

We = Wcore +
λ

π

(
n2

core − n2
clad

)−1/2
(
nclad

ncore

)2σ

, (A.10)

where λ is the optical wavelength, and σ = 1 for TM modes and σ = 0 for TE modes.

We can identify the factor π(m + 1)/We in Eq. (A.9) as the transverse wave-vector

component (kx), such that in the guiding region we have

n2
corek

2
0 = k2

z + k2
x = β2

m +

(
π (m+ 1)

We

)2

, (A.11)

where k0 = 2π/λ. Using the paraxial approximation (n2
corek

2
0 � k2

x) we can write the

propagation constants

βm ≈
2π

λ
ncore −

(
m+ 1

2We

)2 λ π

ncore
, m = 0, 1, 2 . . . (A.12)
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showing a quadratic scaling of the propagation constants with mode number. This is demon-

strated in Fig. A.1(b), showing a quadratic fit to simulated propagation constants of a device

of the type used in this work (guiding silicon ridge on buried oxide). We can see excellent

agreement between the quadratic approximation and the propagation constants obtained

using a commercial mode solver. Simulations of the first six eigenmodes of the structure

are presented in Fig. A.1(c), showing an approximate sine wave spatial distribution, as was

expected from Eq. (A.9).

Directional coupler design

Next, we use the closed-form approximation we have derived to gain more insight into the

field profiles in the MMI structure, and how they can be utilized for practical devices,

following ideas presented in Refs. [367, 369, 370]. Specifically, we will show how multi-port

directional couplers can be designed, splitting and combining optical fields in a controlled

fashion.

First, we define the beat length as the inverse of the difference between the two closest

a bReal image: L = 2(3L
c
) Mirror image: L = 3L

c

Figure A.2: (a) Simulation of an MMI of length 2(3LC) resulting in a real image of the
input at the output plane. (b) Simulation of an MMI of length 3LC such that we have a
mirror image of the input at the output plane. The MMI width in the calculations is 8 µm.
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propagation constants (m = 0, 1)

Lc =
π

β0 − β1
=

4

3

W 2
e

λ
ncore. (A.13)

Next, we write the fields in the MMI (Eq. (A.3)) using this definition, and factor out the

phase of the fundamental mode

E(x, z) =
M−1∑
m=0

cmφm(x)ei(βm−β0)z =
M−1∑
m=0

cmφm(x) exp

[
−iπm(m+ 2)

3Lc
z

]
. (A.14)

We separate this expression into two sums, grouping symmetric (evenm) and anti-symmetric

(odd m) spatial modes

E(x, z) =
M−1∑

m=0,2,4...

cmφm(x) exp

[
−iπm(m+ 2)

3Lc
z

]

+

M−1∑
m=1,3,5...

cmφm(x) exp

[
−iπm(m+ 2)

3Lc
z

]
.

(A.15)

Using the fact that the term m(m+ 2) is even for even m and odd for odd m, we see that

after a propagation length of z = 2p(3Lc) (for p = 0, 1, 2 . . . ) both phase terms will give

us a multiple integer of 2π, yielding a direct image of the input. When the propagation

length is z = (2p + 1)(3Lc) the even phase terms will be a multiple of 2π, while the odd

modes will have a phase of an odd multiple of π, yielding a mirrored image of the input, as

demonstrated in Fig. A.2.

We can also define an intermediate-length LMN = (M/N)3Lc, where M and N are

positive integers without a common denominator (not to confuse with the M we used earlier

for the number of guided modes). It can be shown that N corresponds to the number of

images, and M are possible device lengths (for a short device we can set M = 1). Following

Ref. [369], the output can be written in the form

E(x, z) =
1

C

N−1∑
q=0

Ein(x− xq)e−iϕq , (A.16)
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a bDirectional coupler (1     2) Directional coupler (2     1) 

Figure A.3: MMI as a 50:50 directional coupler. (a) Input to one of the ports splits the
power between the two output ports with a π/2 phase shift between them. (b) Input to
both ports with the correct phase difference directs the light to a single output.

where the normalization, displacement and phase are given by

C = exp
[
−iβ0L

M
N

]N−1∑
q=0

exp

[
iπ
xq
We
− iϕq

]
, xq = (2q −N)

M

N
We, ϕq = q(N − q)M

N
π.

(A.17)

This form reveals the occurrence of multiple copies of the input with different phases and

positions as the field propagates in the device.

Using this insight, we can design an N × N port coupler by using an MMI of length

L = (1/N)3Lc and placing the input at an offset of a = (We/2)(1 − 1/N) from the center

a b3 X 3 directional coupler 4 X 4 directional coupler

Figure A.4: An MMI used as a multi-port directional coupler with different numbers of
ports. (a) 3× 3 coupler. (b) 4× 4 coupler.
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[369]. The phases of the images can also be derived analytically under these assumptions,

where we use the indices n and m for the input and output ports of the coupler [369]

m+ n even: θn,m = −
[
θ0 + π +

π

4N
(m− n)(2N −m+ n)

]
,

m+ n odd: θn,m = −
[
θ0 +

π

4N
(m+ n− 1)(2N −m− n+ 1)

]
,

(A.18)

and the constant phase term is defined as

θ0 = −β0L
1
N −

π

N
− π

4
(N − 1). (A.19)

Examples of directional couplers using this design strategy are simulated in Figs. A.3 and

A.4.

The position of the input waveguide is an important degree of freedom that can yield

different intensity and phase profiles at the output [368]. As an example, directional couplers

with unequal power splitting can be designed. The power directed between ports, from input

port n to output port m can be calculated [370]

Pm
Pn

=
4

N
cos2

[
(N −m)

πn

2N
− π

2

]
, (A.20)

where the MMI length is L1
N , the inputs are located at an offset a = (We/2)(1 − 2n/N)

from the MMI center, and we have assumed single-mode waveguides as input and output

ports. Table A.1 gives some N and n values to achieve different power splitting ratios, and

simulations of such couplers are presented in Fig. A.5.
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Table A.1: Parameters for nonuniform power splitting in an MMI directional coupler [370],
see Eq. (A.20).

N n Splitting ratio

2 1 100:0

3 1,2 100:0

4 1,3 85:15

4 2 100:0

5 1,2,3,4 72:28

6 1,5 62:33:5

6 2,4 50:50

6 3 33:33:33

a b62 : 33 : 5 power splitting 85 : 15 power splitting

Figure A.5: MMI directional couplers with varying power-splitting ratios, following Eq.
(A.20) and Table A.1. (a) 3 × 3 coupler with a 62:33:5 power splitting ratio, using N =
6, n = 1. (b) 2× 2 coupler with a 85:15 power splitting ratio, using N = 4, n = 1.
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Comparison with commercial software

We compare a calculation using the effective index method to solutions obtained using the

FDTD solver Lumerical. We simulate a silicon ridge waveguide with a ridge height of 80 nm

and a total silicon layer of 220 nm. The optical wavelength in the simulation is λ = 1555 nm

and the discretization step is h = 44.36 nm. The effective indices obtained from Lumerical

were ncore = 2.81 and nclad = 2.22, which is a slightly larger index contrast compared with

our numerical calculations.

Fig. A.6 presents the simulation of a 50:50 power splitter and compares it to a calculation

using the approximation methods discussed in the previous sections. We see that the length

of the simulated devices is slightly longer, due to the different refractive indexes. However,

the results are similar and by adjusting the output plane position, the devices exhibit

identical performance.

a bLumerical simulation Eigen-mode calculation

L = 22.6 (μm)

W

W

|
E
|
2

a
rg
(E
)

Input

W

0

0.5

1

|
E
|
2

a
rg
(E
)

Output

0

0.5

1

0

2

Figure A.6: (a) Simulation results of a 50:50 power splitter using a commercial FDTD
solver (Lumerical). (b) Equivalent calculation using the methods described in this section.
The discrepancy in the device length is a result of slightly different values for the effective
indices used in the calculation.
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Phase shifter

MMIs can be utilized to design additional integrated photonic components and devices.

One example is an integrated phase shifter. Since the width of the MMI region is different

than that of a narrower waveguide, the propagation constants of the modes it is guiding are

different, as is seen in Eq. (A.12). Hence, we can couple into the MMI, and couple out at

an image plane, where the field returns to the input spatial profile. The phase accumulated

while propagating through the MMI will be different than that accumulated in a waveguide

with no mode mixing. Fig. A.7(a) shows a 1 µm wide waveguide, demonstrating a π/2

phase shift over the propagation length. In contrast, an MMI section of the same length,

seen in Fig. A.7(b) results in no phase shift, showing how the MMI effectively acts as a π/2

phase shifter.

a bFundamental mode in waveguide π/2 phase shifter using MMI

–π/2
0

Figure A.7: (a) Propagation of the fundamental mode in a 1 µm wide waveguide. (b)
Propagation through an MMI structure, demonstrating a π/2 relative phase shift.
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Mode multiplexer

Another potential application of MMIs is in the design of spatial-mode multiplexers [371,

372]. As an example, we can use the MMI to design mode multiplexers with three ports: a

common multi-mode waveguide on one side and two single-mode waveguides on the other.

Ideally, the device directs each spatial mode to a separate port. When operating in the

reverse direction, each port maps the field to a different spatial mode in the multimode

waveguide. An example of such a design is shown in Fig. A.8, where we assume a multi-

mode waveguide connected to the left side of the structure and two single-mode waveguides

on the right. In panel (a), the fundamental mode is mapped to the upper output waveguide,

and in panel (b) we see that the anti-symmetric mode is routed to the lower output. We

can see that in the anti-symmetric case, there is residual cross-talk at the upper waveguide,

however, the field profile in that region closely corresponds to an anti-symmetric mode,

which could be spatially filtered.

We note that the examples shown here, and throughout this appendix, were calculated

using the approximation methods to demonstrate design principles, and were not optimized

further for performance.

a bMode mux: 1     1 Mode mux: 2     1

Figure A.8: Using an MMI as a spatial mode multiplexer. (a) Input from the fundamental
mode of a 1.5 µm wide waveguide results in the optical power concentrated at the top of the
device output plane. (b) Input from the first anti-symmetric mode of the input waveguide
results in most of the optical power at the bottom of the output plane. By placing output
waveguides at the proper locations, the two modes could be separated.
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Effective index method

We present a short review of the effective index method for modeling 3D waveguides,

as detailed in Refs. [373, 374]. This method enables us to simplify a three-dimensional

waveguide structure, with translational invariance along the optical propagation axis, into

an equivalent two-dimensional system. As an example, we will use the rib waveguide design

of the type studied in this work. A waveguide section is illustrated in Fig. B.1(a), composed

of a silicon guiding layer, in which a ridge has been defined for lateral optical confinement,

over a silica layer. The propagation direction is defined along the z axis, where we assume

translational invariance, and the cross-section is shown in Fig B.1(b).

We start by using the translation invariance property of the waveguide in the z direction

a b c

Figure B.1: The effective index method can be used to model a three-dimensional structure
in two dimensions. (a) A three-dimensional illustration of a silicon (Si) on silica (SiO2)
ridge waveguide (not to scale). (b) Cross section of the ridge waveguide. (c) Using the
effective index method, the waveguide can be reduced to a two-dimensional model with a
guiding core and a cladding.

293
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to write the field as

E(x, y, z, t) = ψ(x, y)eiβze−iωt, (B.1)

such that the Helmholtz equation now has the form [366]

[
∂2

∂x2
+

∂2

∂y2
+ n2(x, y)k2

0 − β2

]
ψ(x, y) = 0. (B.2)

Here, n(x, y) is the refractive index and k0 = ω/c, where ω and c are the optical frequency

and the speed of light in vacuum, respectively. Assuming that ψ(x, y) is separable [374], we

can separate the function into x and y components ψ(x, y) = ψx(x)ψy(y). Substituting this

form into Eq. (B.2), we have

1

ψx(x)

∂2

∂x2
ψx(x) +

1

ψy(y)

∂2

∂y2
ψy(y) + n2(x, y)k2

0 − β2 = 0. (B.3)

We can now define an effective index neff(x), varying only along the x direction, which we

add and subtract in Eq. (B.3). At this point, we can write separate equations for the x

and y components

[
∂2

∂y2
+ n2(x, y)k2

0 − n2
eff(x)k2

0

]
ψy(y) = 0,[

∂2

∂x2
+ n2

eff(x)k2
0 − β2

]
ψx(x) = 0.

(B.4)

Using these equations, we can find the effective index by solving a slab waveguide structure,

infinite in the x direction, in each of the different regions of the waveguide. A detailed

treatment of this method is found in [373].

For the silicon-on-silica ridge structure we are interested in —with a ridge height of 80

nm and a total silicon thickness of 215 nm— the effective indices obtained at an optical

wavelength of λ = 1550 nm are ncore = 2.76 and nclad = 2.36. Using these values, the

problem can be simplified to the two-dimensional structure illustrated in Fig. B.1(c). We

see that the effective index values obtained are between the refractive indices of bulk silicon

(nSi = 3.48) and silica (nSiO2 = 1.44).
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efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber. Opt. Express,
14(13):5860–5865, 2006.

[131] C. J. Misas, P. Petropoulos, and D. J. Richardson. Slowing of pulses to c/10 with
subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide
optical fiber. J. Lightwave Technol., 25(1):216–221, 2007.

[132] J. Liu, T.-H. Cheng, Y.-K. Yeo, Y. Wang, L. Xue, W. Rong, L. Zhou, G. Xiao,
D. Wang, and X. Yu. Stimulate Brillouin scattering based broadband tunable slow-
light conversion in a highly nonlinear photonic crystal fiber. J. Lightwave Technol.,
27(10):1279–1285, 2009.

[133] R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies,
and B. J. Eggleton. Photonic-chip-based tunable slow and fast light via stimulated
Brillouin scattering. Opt. Lett., 37(5):969–971, 2012.

[134] M. Merklein, B. Stiller, K. Vu, S. J. Madden, and B. J. Eggleton. A chip-integrated
coherent photonic-phononic memory. Nat. Commun., 8(1):1–7, 2017.

[135] M. Merklein, B. Stiller, and B. Eggleton. Brillouin-based light storage and delay
techniques. J. Opt., 20(8):083003, 2018.

[136] I. A. Williamson, M. Minkov, A. Dutt, J. Wang, A. Y. Song, and S. Fan. Integrated
nonreciprocal photonic devices with dynamic modulation. Proc. IEEE, 108(10):1759–
1784, 2020.

[137] M. S. Kang, A. Butsch, and P. S. J. Russell. Reconfigurable light-driven opto-acoustic
isolators in photonic crystal fibre. Nat. Photonics, 5(9):549, 2011.

[138] C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. Steel, and B. J. Eggleton. Design
for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-
engineered chalcogenide waveguides. Opt. Express, 20(19):21235–21246, 2012.

[139] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich. Non-
reciprocal interband Brillouin modulation. Nat. Photonics, 12(10):613–619, 2018.

[140] R. Aigner. SAW and BAW technologies for RF filter applications: A review of the
relative strengths and weaknesses. In IEEE Int. Ultrason., pages 582–589. IEEE,
2008.

[141] Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok.
Tunable sharp and highly selective microwave-photonic band-pass filters based on
stimulated Brillouin scattering. Photonics Res., 2(4):B18–B25, 2014.

[142] B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies,
and B. J. Eggleton. Tunable microwave photonic notch filter using on-chip stimulated
Brillouin scattering. Opt. Commun., 313:85–89, 2014.

[143] A. Mahendra, Y. Liu, E. Magi, A. Choudhary, D. Marpaung, and B. J. Eggleton.
High link performance of Brillouin-loss based microwave bandpass photonic filters.
OSA Continuum, 1(4):1287–1297, 2018.



BIBLIOGRAPHY 305

[144] Y. Xie, A. Choudhary, Y. Liu, D. Marpaung, K. Vu, P. Ma, D.-Y. Choi, S. Mad-
den, and B. Eggleton. System-level performance of chip-based Brillouin microwave
photonic bandpass filters. J. Lightwave Technol., 2019.

[145] D. Culverhouse, K. Kalli, and D. Jackson. Stimulated Brillouin scattering ring
resonator laser for SBS gain studies and microwave generation. Electron. Lett.,
27(22):2033–2035, 1991.

[146] T. Schneider, M. Junker, and K.-U. Lauterbach. Theoretical and experimental in-
vestigation of Brillouin scattering for the generation of millimeter waves. JOSA B,
23(6):1012–1019, 2006.

[147] S. Preussler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger,
A. Zadok, U. Woggon, and T. Schneider. Generation of ultra-narrow, stable and
tunable millimeter-and terahertz-waves with very low phase noise. Opt. Express,
21(20):23950–23962, 2013.

[148] M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J.
Eggleton, and R. Slav́ık. Widely tunable, low phase noise microwave source based on
a photonic chip. Opt. Lett., 41(20):4633–4636, 2016.

[149] R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumen-
thal. Fundamental noise dynamics in cascaded-order Brillouin lasers. Phys. Rev. A,
98(2):023832, 2018.

[150] L. Zhan, J. Ji, J. Xia, S. Luo, and Y. Xia. 160-line multiwavelength generation
of linear-cavity self-seeded Brillouin-erbium fiber laser. Opt. Express, 14(22):10233–
10238, 2006.

[151] D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon. Generation of multiorder
stokes and anti-stokes lines in a Brillouin erbium-fiber laser with a sagnac loop mirror.
Opt. Lett., 23(21):1671–1673, 1998.

[152] I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Mad-
den, and B. J. Eggleton. Chip-based Brillouin radio frequency photonic phase shifter
and wideband time delay. Opt. Lett., 42(7):1313–1316, 2017.

[153] L. McKay, M. Merklein, A. Choudhary, Y. Liu, M. Jenkins, C. Middleton, A. Cramer,
A. Chilton, J. Devenport, K. Vu, et al. Broadband Brillouin phase shifter utilizing
RF interference: Experimental demonstration and theoretical analysis. J. Lightwave
Technol., 38(14):3624–3636, 2020.

[154] S. Gertler, P. Kharel, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich. Shaping
nonlinear optical response using nonlocal forward Brillouin interactions. New J. Phys.,
22(4):043017, 2020.

[155] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, P. Kharel, and P. T. Rakich. Microwave
filtering using forward Brillouin scattering in photonic-phononic emit-receive devices.
J. Lightwave Technol., 38(19):5248–5261, 2020.



BIBLIOGRAPHY 306

[156] S. Gertler, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich. Tunable microwave-
photonic filtering with high out-of-band rejection in silicon. APL Photonics,
5(9):096103, 2020.

[157] R. W. Boyd. Nonlinear optics. Academic Press, 2003.

[158] A. Yariv. Quantum electronics. Wiley, 1989.

[159] C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton. Stimulated Brillouin scatter-
ing in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-
mode analysis. Phys. Rev. A, 92(1):013836, 2015.

[160] D. Royer and E. Dieulesaint. Elastic waves in solids II: generation, acousto-optic
interaction, applications. Springer Science & Business Media, 1999.

[161] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang. Giant enhancement of
stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X, 2(1):011008,
2012.

[162] P. T. Rakich, P. Davids, and Z. Wang. Tailoring optical forces in waveguides through
radiation pressure and electrostrictive forces. Opt. Express, 18(14):14439–14453, 2010.

[163] W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang. Stimulated
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[169] M. Merklein, I. V. Kabakova, T. F. Büttner, D.-Y. Choi, B. Luther-Davies, S. J.
Madden, and B. J. Eggleton. Enhancing and inhibiting stimulated Brillouin scattering
in photonic integrated circuits. Nat. Commun., 6:6396, 2015.

[170] C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton. Cascaded forward
Brillouin scattering to all stokes orders. New J. Phys., 19(2):023021, 2017.

[171] J. Sipe and M. Steel. A Hamiltonian treatment of stimulated Brillouin scattering in
nanoscale integrated waveguides. New J. Phys., 18(4):045004, 2016.

[172] P. Kharel, R. Behunin, W. Renninger, and P. Rakich. Noise and dynamics in forward
Brillouin interactions. Phys. Rev. A, 93(6):063806, 2016.



BIBLIOGRAPHY 307

[173] G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre. Brillouin optomechanics in
nanophotonic structures. APL Photonics, 4(7):071101, 2019.

[174] H. Haus. Electromagnetic Noise and Quantum Optical Measurements. Advanced
Texts in Physics. Springer Berlin Heidelberg, 2012.

[175] R. W. Boyd, K. Rzaewski, and P. Narum. Noise initiation of stimulated Brillouin
scattering. Phys. Rev. A, 42(9):5514, 1990.

[176] Y. London, H. H. Diamandi, G. Bashan, and A. Zadok. Invited article: Distributed
analysis of nonlinear wave mixing in fiber due to forward Brillouin scattering and Kerr
effects. APL Photonics, 3(11):110804, 2018.

[177] F. Dabby and J. Whinnery. Thermal self-focusing of laser beams in lead glasses. Appl.
Phys. Lett., 13(8):284–286, 1968.

[178] M. Horowitz, R. Daisy, O. Werner, and B. Fischer. Large thermal nonlinearities and
spatial self-phase modulation in SrxBa1−xNb2O6 and BaTiO3 crystals. Opt. Lett.,
17(7):475–477, 1992.

[179] C. Rotschild, B. Alfassi, O. Cohen, and M. Segev. Long-range interactions between
optical solitons. Nat. Phys., 2(11):769, 2006.

[180] Y. V. Izdebskaya, V. G. Shvedov, P. S. Jung, and W. Krolikowski. Stable vortex
soliton in nonlocal media with orientational nonlinearity. Opt. Lett., 43(1):66–69,
2018.
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