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Acoustic-wave devices have become indispensable components of modern technologies 

with applications ranging from time-keeping to signal processing. Since acoustic waves 

can store information for extended periods of time in compact mode volumes and 

mediate interactions between different types of excitations (photons, microwaves, and 

defect centers), phonons are intriguing resources for emerging quantum  technologies.

In order to efficiently utilize mechanical degrees of freedom for both  scientific and 

technological applications ranging from studies of decoherence to precision metrol

ogy and quantum  information, we seek long-lived phonons th a t are less sensitive to 

therm al noise. Often times, this means achieving coherent control of high-frequency 

mechanical modes th a t are more decoupled from their therm al environment or oper

ations a t cryogenic tem peratures.

In this context, bulk acoustic wave (BAW) resonators are crucial resources for 

both classical and quantum  technologies. Since acoustic dissipation within crystalline 

solids plummets a t cryogenic tem peratures, BAW resonators, which are formed by 

shaping the surfaces of pristine crystals, can support long-lived phonon modes. To 

date, electromechanical coupling has been used to access such long-lived phonons 

within piezoelectric crystals, enabling various scientific and technological applications 

ranging from tests of Lorentz symmetry to low-noise oscillators. However, if we could 

access such bulk acoustic phonons with light, we have an opportunity to access high- 

frequency phonons in practically any transparent crystal, opening new avenues for 

sensitive metrology, materials spectroscopy, high-performance lasers, and quantum



information processing.

In this thesis, we dem onstrate the optical control of long-lived, high-frequency 

phonons within BAW resonators. We utilize Brillouin interactions to engineer tai- 

lorable coupling between free-space laser beams and high Q-factor phonon modes 

supported by a plano-convex BAW resonator. Analogous to the Gaussian beam res

onator design for optics, we present analytical guidelines, numerical simulations, and 

novel microfabrication techniques to create stable acoustic cavities th a t support long- 

lived bulk acoustic phonons.

For efficient optical control of bulk acoustic phonons, we utilize resonant multi- 

mode interactions by placing the bulk crystal inside an optical cavity. Resonant in

teractions perm it us to dramatically enhance the optomechanical coupling strength. 

Utilizing enhanced optomechanical interactions in a system where we can select be

tween Stokes and the anti-Stokes process, we dem onstrate cooling and param etric 

amplification of bulk acoustic modes as a basis for ultra-low-noise oscillators and 

high-power lasers.

Finally, we enhance the optomechanical coupling strength to  be larger than  the 

optical and mechanical decoherence rates, creating hybridized modes th a t are part 

light and part sound. Deterministic control of long-lived bulk acoustic phonons with 

light in this so-called strong coupling regime opens the door to  applications ranging 

from quantum  transduction to  quantum  memories.
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p osition  (d). (a) A schematic showing how the crystal is displaced 

from its original location d to d + Ad.  (b) Plot of the optical mode 

frequencies {coj) (near 193 Thz or 1550 nm wavelength) as a function 

Ad.  This plot reveals period variation in the optical mode frequency 

with a periodicity th a t is equal to half the wavelength of light, which 

corresponding to crystal moving through the nodes and the anti-nodes

of the standing wave optical cavity modes. A dapted from Ref. [111]. . 87
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5.7 M easured  reflection  sp ectru m  at cryogenic tem p eratu res, (a)

Reflection spectrum  obtained by sweeping the laser from 1548 to  1552 

nm, revealed narrow optical resonances corresponding to longitudinal 

cavity modes, (b) The observed undulation in the FSR as a function 

of the cavity frequency (or mode number j) matches well w ith the 

theoretically predicted values. A dapted from Ref. [ I l l ] ........................... 89

5.8 V ariation  in th e  coupling  rate as a fu nction  o f th e  crysta l p o 

s ition  (d). A  schematic showing the displacement of the bulk acoustic 

resonator inside the optical cavity, (b) Optomechanical coupling oc

curs to a small set of phonon modes (indexed by longitudinal mode 

number m) near the Brillouin frequency. For an arbitrary crystal dis

placement, we still have appreciable coupling at least one phonon mode. 

Coupling to an individual phonon mode (say rn =  20725) is periodic 

as a function, (c) Line cuts to this plot (in b) shows how it is pos

sible to engineer coupling to primarily one (inset i), two (inset ii) or 

three phonon modes (inset hi) by changing the crystal displacement. 

A dapted from Ref. [ I l l ] ....................................................................................  95

5.9 O ptical and acoustic  m od e profiles. We use ABCD m atrix for

Gaussian beam propagation to determine optical mode waist inside 

the optical cavity. Since, acoustic modes in a planar crystal are not 

confined laterally (or in the transverse direction), we assume th a t the 

transverse mode profile is simply given by the profile of the forcing func

tion, which is proportional to the square of the optical field. Adapted 

from Ref. [ I l l ] ......................................................................................................  97
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5.10 B ilinear in teraction  H am ilton ian  (a-b) An external control laser 

which is on resonance with the lower (higher) frequency optical mode 

produces a “beam -splitter” ( “two-mode squeezing” ) interaction within 

our multimode system. Since the laser is directly on resonance with a 

cavity mode, we can dram atically enhance the coupling rates for such 

interactions............................................................................................................  98

5.11 O ptom ech anically  induced  transparency  in a s in g le-m od e op

tom echan ica l sy stem , (a) Schematic showing a “control” laser th a t 

is red-detuned from an optical cavity mode by Clm- A weak laser then 

probes the transmission spectrum  of the optical mode, (b) W ithin a 

ring resonator geometry, the probe light inside the cavity destructively 

interferes with the anti-Stokes light generated from optomechanical 

scattering, (c) As a result, the optical transmission spectrum  develops

a narrow transmission band at ujcav................................................................ 1 0 1

5.12 O ptom ech an ically  ind uced  transparency in a m u ltim od e op

tom echan ica l sy stem , (a) A strong red-detuned control laser at 

frequency uJi is on resonance with a lower-frequency optical mode at 

uji while a weak probe at ujp is swept near the higher frequency optical 

mode at UJ2 - (b) A sharp dip on the transmission spectrum  as a re

sult of destructive interference between the intracavity probe field and 

the anti-Stokes field generated through the optomechanical interaction. 

Adapted from Ref. [ I l l ] ....................................................................................  104
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5.13 O ptom ech an ically  ind uced  am plification  in a m u ltim od e op

tom ech an ica l system , (a) A strong blue-detuned control laser at 

frequency u)i is on resonance with a higher-frequency optical mode at 

ÜÜ2 while a weak probe at Up is swept near the lower frequency opti

cal mode at uj\. (b) A sharp peak on the transmission spectrum  as 

a result of destructive interference between the intracavity probe field 

and the Stokes field generated through the optomechanical interaction. 

A dapted from Ref. [ I l l ] ....................................................................................  106

5.14 Fin d in g  an op tica l m od e pair to  m atch  B rillou in  frequency.

(a) Schematic of the measurement apparatus used to find optical mode 

pairs to m atch Brillouin frequency. Light from a tunable laser source 

is continuously swept and the back-refiection power from the optical 

cavity (with bulk crystal) is measured as a function of time. Since this 

frequency sweep is not perfectly linear as a function of time, we use a 

separate Fiber Fabry-Pérot cavity to calibrate the frequency axis, (b) 

Measured back-reflected power obtained by sweeping the laser from 

1548 to 1552 nm. High resolution spectra near 193.42 THz shows 

unequal free-spectral ranges due to the introduction of quartz crys

ta l inside the optical cavity, (c) This variation in optical FSR as a 

frequency of optical mode frequency allows us to relatively easily find 

multiple pairs of optical resonances th a t m atch the Brillouin frequency. 

Adapted from Ref. [ I l l ] ....................................................................................  110
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5.15 S chem atic o f th e  exp erim en ta l setu p  used  to  perform  O M IT / O M IA  

m easurem ents. A strong control laser and a weak probe laser are syn

thesized from the same laser source using an intensity modulator. The 

control laser is on resonance with an appropriately chosen optical mode 

whereas the weak probe laser is swept through the other optical cavity 

mode. To determine the coherent-response of the intracavity probe 

field due to optomechanical interaction, we measure the transm itted 

probe light using heterodynme detection. Adapted from Ref. [111]. . 112

5.16 O M IT /O M IA  m easurem ents, (a)We engineer our system to cou

ple primarily to a single phonon mode at 12.645 GHz and perform 

OMIA measurements. We measure OMIA peak heights as a function 

of input control laser power. We observe th a t the peak height increases 

non-linearly with control laser power, (b) We perform OMIT measure

ments by simply red-detuning the control laser. The OMIT dip is not 

exactly at the center of the optical resonance because the control laser 

is not exactly on resonance with the lower frequency optical mode. We 

observe th a t the OMIT dip decreases non-linearly with control laser 

power. A dapted from Ref. [ I l l ] ......................................................................  114
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5.17 C haracterizing and g^.  (a) From the OMIT (OMIA) measure

ments in Fig. 5.16, we obtain effective acoustic linewidth as a function 

of control laser power by measuring the linewidth of the OMIT dip 

(OMIA peak). By extrapolating the effective phonon linewidths to 

zero input power, we obtain F^ =  86 kHz. (b) The relative peak 

height of the OMIA signal matches well with the theoretically pre

dicted 1/(1 — Cy  dependency. (c)We use the measured relative peak 

height of the OMIA signal to calculate cooperativity C  as a function 

of input control laser power. Linear fit to this graph, along with the 

measured values of K, F ^ , and A 2 , was used to determine % 27rx

18 Hz. Adapted from Ref. [ I l l ] ....................................................................... 115

5.18 O ptom echanical coup ling  to  m u ltip le bulk acou stic  phonon  

m od es, (a) By selecting a different pair or optical modes (i.e. chang

ing optical wavelength) we can tailor coupling to couple to more than 

one phonon modes, (b) High resolution OMIA measurement near the 

near the center of the optical resonance reveals three high-frequency 

acoustic modes around 12.661 GHz with frequency spacing of 610 

kHz, which is consistent with the acoustic free spectral range of Va/2Lac- 

Adapted from Ref. [ I l l ] ....................................................................................  116
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5.19 T herm al fluctuation s and m echanical self-oscillation , (a) We

tune a strong control laser directly on-resonance with the high-frequency 

optical mode at to observe therm al fluctuations of a mechanical 

mode. The therm ally-populated phonon mode spontaneously scatters 

light from the higher energy optical mode at to the lower energy op

tical mode at (Stokes field), (b) The measurement of backreflected 

optical power as a function of the input control laser power reveals 

a clear threshold behavior a t 137 mW. This occurs because of regen

erative self-oscillation of the phonon mode when C > 1. Note th a t 

linear increase in backreflected optical power before the threshold oc

curs due to imperfect coupling of the control laser to the optical mode 

at ÜJ2 . Once self-oscillating, coherent phonons scatter a large fraction 

of the input control laser into Stokes light, leading to a dram atic in

crease in the backreflected optical power. Moreover, above threshold, 

we observe a significant line narrowing of the heterodyne beat-tone of 

scattered Stokes light with the frequency shifted version of the input 

control laser, (c) Once the control laser is locked on resonance with the 

optical mode at uj2 using Pound-Drever-Hall technique, we observed 12 

Hz linewidth for the heterodyne beat tone. A dapted from Ref. [111]. . 120

5.20 T herm al flu ctu ation s and phonon  m ode cooling, (a)We tune 

a strong control laser directly on-resonance with the lower-frequency 

optical mode at to observe therm al fluctuations of a mechanical 

mode. The therm ally-populated phonon mode spontaneously scatters 

light from the lower energy optical mode at to the higher energy 

optical mode at uj2 (anti-Stokes field), (b) At C > 0, anti-Stokes 

scattering increases the effective damping rate (T ^) of the phonon 

mode........................................................................................................................ 124
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5.21 Internal losses (a) Schematic shows how the tilt of the quartz crystal 

with respect to the optical cavity axis can introduce additional internal 

losses for photons. A dapted from Ref. [112]......................................  125

5.22 T h erm om etry  o f th e  acou stic  m ode, (a) OMIT measurements as 

a function of control laser power (Pin) is used to determine /t, and 

Qm- (b) Measurement of the spontaneously spectra at various control 

laser power (c) Cooperativity as a function of Pin), (d) Extracted 

effective phonon number Ueff as a function of C. From a theoretical fit

to  this data, we obtain nth ~  25 T  1. A dapted from Ref. [112].... 126

6.1 Linearized in teraction  regim e, (a) Schematic of the bulk acoustic

resonator inside a high finesse optical cavity consisting of mirrors hav

ing high (99.9%) reflectivity, (b) A control laser is on resonance with 

the lower frequency (wi) optical mode to enhance the optomechani

cal coupling rate and a weak probe probes the transmission spectrum  

of the higher frequency (W2 ) optical mode, (c) Under stiff pump ap

proximation, we can eliminate the dynamics of the low frequency (w%) 

optical mode to obtain linear coupling between higher frequency optical 

mode, ü2 , and the phonon mode, h. Adapted from Ref. [112]................. 133

6.2 O ptom echanical stron g  coupling. In the strong coupling regime,

the optical and acoustic modes form collective excitation (symmetric 

and anti-symmetric superpositions) th a t are part light and part sound.

So, as we sweep the frequency of the optical mode (<2 2 ) and bring it on 

resonance with the acoustic mode (6^), we expect an avoided crossing 

in the optical transmission spectrum. The energy difference between 

such eigenmodes is exactly equal to 2p^ when A =    136
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6.3 C oherent energy exch ange b etw een  th e  op tica l and th e  acous

tic  m od e, (a) In the strong coupling regime, if we were to excite our 

system with a weak probe pulse, we expect the energy to slosh back 

and forth between the optical and the acoustic modes. On resonance,

=  A, the energy exchange occurs at rate 2^^. However, this energy 

exchange rate changes when the optical and acoustic modes are not on 

resonance as seen in (b )..................................................................................... 138

6.4 Schem atic o f th e  m easurem ent apparatus (a) We measure the fre

quency response of the higher frequency optical mode (0 0 2 ) by sweeping 

a probe laser through the resonance, b) The time domain measure

ment is performed by pulsing a weak probe, which is on resonance 

with the mechanical mode, (c) The control as well as the probe laser 

light are dervied from the same laser using an intensity modulator.

A Pound-Derver-Hall locking technique is used to lock the control 

laser on resonance with the lower frequency (wi) optical mode. An 

arbitrary  waveform generator (AWG) is used to synthesize a pulse 

probe. The transm itted probe light is detected using sensitive het

erodyne technique for both frequency and time-domain measurements.

PC: polarization controller, LO: local osciallator, SSB: single sideband 

mizer, IF: intermediate frequency, PS: power splitter, DET: optical 

detector, BPF: bandpass filter, LPF: low-pass filterAMP: rf amplifier, 

CIRC: fiber circulator, VGA: voltage controlled attenuator, LPF, FM: 

frequency modulation, CM: Clean measurement, IM: intensity mod

ulator, and PID: proportional-integral-derivative controller. Adapted 
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6.5 C oupling to  a single acou stic  m ode, (a) OMIT measurements at 

low powers ( 86 pW  to 309 p  W) when coupled prim arily to a single 

acoustic mode, (b)-(d) Such spectra at low powers can be used to 

extract Qm, and F ^ . A dapted from Ref. [112]........................................  143

6.6 E nhancing th e  op tom ech an ica l coupling rate, (a) As we push 

our system into the strong coupling regime by enhance we observe 

the formation of two hybridized modes th a t are part light and part 

sound, (b) The energy splitting between these two eigenmodes is given 

by 2gm, which increases proportional to as expected from theory. 

Adapted from Ref. [112]. .  ..........................................................................  144

6.7 Frequency and tim e-d om ain  dynam ics in th e  strong  coupling  

regim e, (a) We observe an avoided crossing as we bring the optical 

mode (A) in resonance with the optical mode. Since the optical FSR 

changes with tem perature, we tune A by changing the cryostat’s tem 

perature. (b) Time-domain response of the system taken at the same 

set of tem peratures as in (a). Probe transmission spectrum  after a 

pulse probe is turned on reveals oscillations at every 69 ns ~  27r/2gm 

and exponential decay a t timescale r  ~  70 ns ~  2//c. Additional re

vivals in the time-domain d a ta  is a consequence of weak coupling to 

a m ultitude of acoustic modes outside the Brillouin gain bandwidth. 
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6.8 M u ltim od e strong coupling (a) We reconfigure our optomechanical 

system so th a t one optical mode couples strongly to three acoustic 

modes, (b) In this regime, we expect four hybridized modes th a t are 
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XXIX
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Chapter 1

Introduction

A variety of linear and nonlinear processes occur when light interacts with m atter [1]. 

Such interactions arise from coupling of light to internal degrees of freedom of the 

solid, resulting in either elastic or ineslatic light scaattering processes. For example, 

the blue color of the sky is a consequence of elastic (linear) scattering of sunlight 

due to  the electrical polarizability of molecules in the atmosphere [2]. On the other 

hand, green laser pointers utilize inelastic (nonlinear) light scattering, particularly 

the mechanism of frequency doubling, to synthesize visible light from infrared laser 

light [3].

Brillouin scattering is a type of inelastic light scattering th a t occurs when light 

waves interact w ith elastic waves in a medium [4-6] ; therm ally populated elastic waves 

(or acoustic phonons) spontaneously scatter an incident light wave to higher and lower 

frequency sidebands. It is analogous to  Ram an scattering [7,8], which results from the 

scattering of light from the vibrational modes (or optical phonons) of the molecules 

constituting the medium. Typically, the frequency shifts due to  Brillouin scattering 

in most solids is of the order of 10 GHz, which is much smaller than  10s of THz 

observed for Raman-shifts [1].

Even though Brillouin scattering was experimentally observed almost a century



ago [9], exploration of this scattering mechanism for various scientific and technolog

ical applications continues to this day. In the earlier days (1940s-1960s), Brillouin 

scattering was widely used as spectroscopy tool to measure various properties of 

solids [10,11] and liquids [12,13]. After the invention of lasers in the 1960s [14], 

Brillouin-based stim ulated light scattering processes [15] were used for applications 

ranging from spectroscopy [16,17] to tunable laser sources [18,19]. In contrast to spon

taneous Brillouin scattering, which results from scattering of incident laser light by 

therm al phonons, stim ulated scattereing process occurs because optical forces gen

erated by incident laser fields drive phonons which in tu rn  scatter light into new 

frequency components. This field saw even more progress after the invention of low 

loss optical fibers [20, 21] and the dem onstration of stim ulated Brillouin scattering 

within such fibers in 1972 [22].

As opposed to light-sound coupling in a bulk medium [15], optical fibers provided a 

platform where light waves and sound waves could interact over long distances [23,24]. 

However, this increased nonlinearity within optical fibers has been a m ajor hindrance 

to fiber-based long-distance optical communication [22,25]. This is because stim ulated 

Brillouin scattering (SBS) causes light propagating within a long fiber-optic cable to 

backreffect and redshift even at modest (10s of mW) optical powers [25,26]. Therefore, 

suppression of SBS in an optical fiber remains active area of research even today [27- 

31]. Nevertheless, increased interaction lengths for nonlinear light-sound interaction 

within optical fibers has enabled a whole host of technologies including low-threshold 

Brillouin lasers [32-34], amplifiers [35], sensors [36-38], dynamics gratings [39,40], 

and Brillouin-based signal processing devices [41,42].

More recently, the demonstration of Brillouin scattering within m icrostructured 

fibers [43-45] and on-chip waveguides [46-48] has led to a renaissance in the field 

of Brillouin scattering. By tailoring the overlap between the light and the sound 

fields, these structures have not only perm itted greater control [45,49] over Brillouin



interactions but also enabled dram atic enhancement [50] in the Brillouin nonlinearity 

(lO"̂  — 10  ̂ larger than  those in optical fibers). Such engineerable light-sound coupling 

has led to a plethora of new technologies including opto-acoustic isolators [51-54], 

low noise lasers [47,55-58] , microwave synthesizers [58-60], narrowband microwave 

filters [61-63], pulse storage devices [64,65], and gyroscopes [58,66].

While Brillouin scattering can be greatly enhanced by tailoring the acousto-optic 

overlap within microscale and nanoscale waveguides, large Brillouin nonlinearities 

can also be achieved within bulk materials by extending acoustic lifetimes. This is 

because the effective strength of Brillouin coupling increases with the acoustic life

time. Therefore, achieving control over acoustic lifetimes could provide an alternative 

approach to tailor Brillouin interactions.

In this context, optical fibers provide a natural platform to guide acoustic waves 

and m itigate certain acoustic loss channels for enhanced Brillouin interaction. The 

germanium doped core of a single mode fiber has a slightly lower longitudinal sound 

velocity compared to th a t of the cladding, perm itting acoustic guiding inside the fiber 

core [24,67]. This eliminates extrinsic loss mechanisms such as diffraction losses and 

provides an opportunity to explore intrinsic acoustic dissipation mechanisms.

Many experiments attem pted to reach intrinsic levels of acoustic dissipation in 

fiber by lowering the system tem perature [68,69]. At low tem peratures, therm al 

phonons, which typically scatter coherent phonons through various nonlinear pro

cesses [70], are quenched, leading to a modest (~  12 times) lifetime enhancement 

compared to th a t at room tem peratures [71]. However, this acoustic dissipation 

trend within silica-based optical fibers-and more generally within amorphous m edia- 

reverses (acoustic dissipation increases) a t cryogenic tem peratures due to the delete

rious effect of two-level tunneling states (TLSs) [70,72,73].

In this context, crystalline media provide an alternative platform to access low loss 

phonons as acoustic dissipation plummets more dram atically in crystals at cryogenic



tem peratures [74,75]. A number of theoretical studies [76-78] in the 1930s, which 

explored fundamental limits to acoustic dissipation in crystalline solids, suggested 

th a t astonishingly large Q-factors (>  10^^) [79] could be achieved within pristine 

crystalline solids a t cryogenic tem peratures. Such fundamental limit to acoustic dis

sipation in a real perfect crystal is a consequence of the anharmonicity of the lattice 

potential energy; anharmonicity in the lattice potential gives rise to nonlinear acous

tic scattering, causing coherent phonons to scatter off of therm al phonons or even 

vacuum fluctuations, akin to nonlinear wave mixing in optics [80].

Acoustic dissipation due to such phonon-phonon scattering can vary dram atically 

with crystal structure and crystal cut [81]. Energy conservation and phase matching 

requirements severely limit which nonlinear acoustic scattering processes can occur 

[79]; typically, three-phonon scattering is the most dominant source of acoustic loss. 

Moreover, as a consequence of anisotropy in the elastic constants in crystalline media, 

coherent phonons can scatter off of only certain polarizations of therm al phonons 

[74,79,82]. Therefore, the fundamental limit to acoustic dissipation depends strongly 

on the choice of the crystalline structure and the crystalline axis [81].

A number of experiments in the 1940s-1970s explored tem perature dependence of 

acoustic dissipation in a variety of crystals [74,83-95]. For example, such measure

ments in trigonal crystals (such as sapphire, quartz, and lithium niobate) revealed 

th a t the acoustic dissipation of high-frequency (9.4 GHz) longitudinal acoustic waves 

follows a T^'^-law at cryogenic tem peratures (~  20K-100K) [75]. These astonishingly 

steep acoustic dissipation trends as a function of tem perature suggested a great op

portunity to  access long lived, high-frequency phonons within crystalline solids by 

further lowering the cryogenic tem perature.

However, these attenuation measurements themselves introduced additional acous

tic losses [84,87,91], hindering the prospect of harnessing long lived phonons at liquid 

helium tem peratures and below. Such early experiments exploring attenuation of



hypersonic waves relied on piezoelectricity to generate phonons. A microwave cavity 

with a piezoelectric crystal tha t was partially inserted inside the cavity walls was used 

to transduce as well as detect hypersonic waves. Therefore, either piezoelectric films 

(such as CdS [75,92]) were deposited on non-piezolectric samples or these samples 

were bonded with piezoelectric materials using spurious materials (such as indium 

film [85], resin [96], and epoxy [94]), which introduced additional acoustic loss.

In addition, imperfections in the crystal as well as the crystalline geometry itself 

severely impacted measurements of intrinsic acoustic attenuation. There was a large 

variation in crystal quality (i.e. the amount of defects and impurities) within naturally 

occurring crystalline samples and the technologies for growing ultra-pure synthetic 

crystalline materials were not as m ature as we have today. Moreover, the crystalline 

samples typically used for such measurements were fiat-fiat samples, meaning the 

traveling acoustic waves suffered beam diffraction and scattering as they reflected off 

the samples surfaces [83].

To access high Q-factor acoustic modes by m itigating extrinsic loss channels for 

phonons, a new type of piezoelectric resonator was invented in the 1970s [97-99]. 

These acoustic resonators-also known as BYA resonators-consisted of a plano-convex 

contoured quartz and they featured a contactless electrode design, perm itting trans

duction of ultrasonic acoustic waves in the 5-100 MHz range [99]. Similar to a plano

concave optical cavity, the plano-convex acoustic resonator supported acoustic modes 

th a t were tightly trapped inside the resonator, eliminating acoustic diffraction losses. 

Moreover, the contactless electrode design m itigated spurious scattering losses by the 

electrodes themselves.

More recently, using such plano-convex acoustic resonators and paying careful 

attention to nonidealities in the crystal quality and surfaces, Galliou et al. [100] 

dem onstrated record high Q-factors (8 billion) for 200 MHz acoustic waves in quartz at 

liquid helium tem peratures. Such resonators [100,101] have had tremendous scientific



and technological impact with applications ranging from tests of Lorentz symmetry 

[102] to tests of quantum  gravity [103].

These remarkable demonstrations of ultra-low loss phonons within quartz bulk 

acoustic wave resonators spurred a number of questions: How low can we go in terms 

of acoustic dissipation? Could we access such low loss phonons a t GHz frequencies? 

Gould we achieve even lower acoustic losses using other crystalline substrates such as 

sapphire, silicon, or diamond? Unfortunately, a vast m ajority of these crystals are 

not piezoelectric, preventing electromechanical transduction of acoustic waves within 

such crystals.

Optical access to such long-lived acoustic waves within crystalline solids could 

enable studies of acoustic dissipation in a wider class of crystals. Unlike piezoelec

tric effect, photoelastic effect is present in all solids, meaning electrostrictive optical 

forces can be used to generate and detect elastic waves in practically any transparent 

crystal. We could then envision using such optomechanical transduction to harness 

favorable coherence properties of bulk acoustic waves for applications ranging from 

high-performance oscillators to quantum  information processing.

In this context, stim ulated Brillouin spectroscopy of tellurium  dioxide (TeOg) 

crystals a t cryogenic tem peratures by Ohno et al. [104,105] revealed new features 

in the Brillouin spectra due to reflection of traveling acoustic waves at the crystal 

surfaces. These measurements confirmed th a t Brillouin scattering can be used to 

both generate and detect standing-wave phonon modes within crystals at cryogenic 

tem peratures.

1.1 Sum m ary o f d issertation

In this dissertation, building upon prior measurements of Brillouin scattering at cryo

genic tem peratures, we report several advances which enable efficient optical control



of long-lived phonon modes of a bulk acoustic resonator. These advances pave the 

way for utilizing long-lived bulk acoustic phonons for materials spectroscopy, pre

cision metrology, exploration of new regimes of laser physics, as well as quantum  

information processing.

•  In Chapter 2, we bridge the gap between cryogenic Brillouin physics and meso

scopic optomechanical interactions by engineering bulk acoustic phonon modes 

and their interaction with free-space laser beams. We use a Hamiltonian based 

framework to explore optomechanical interactions in this new regime of Bril

louin dynamics where discrete standing wave phonon modes mediate interaction 

between counterpropagating laser fields. This perm its us to draw an analogy 

between our bulk crystalline optomechanical system and a multimode cavity 

optomechanical system. We develop new optomechanical design principles, sim

ulation techniques, and precision spectroscopy methods to transduce and detect 

long-lived phonon modes of a macroscopic (cm-scale) bulk acoustic resonator 

with laser fields, expanding the range of possible optomechanical interactions 

in bulk crystals. This work is based in Ref. [106] and the theoretical ground

work for exploring such optomechanical interaction was presented in Ref. [107]. 

These results are presented in chapter 3.

[106] W. H. Renninger*, P. KhareP, R. O. Behunin, and P.T. Rakich, 

“Bulk crystalline optomechanics,” Nature Physics 14 , 601-607 (2018). 

These authors contributed equally.

[107] P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, 

“Noise and dynamics in forward Brillouin interactions,” Physical Review 

T  93 , 063806 (2016).

•  In Chapter 4, we report novel design principles and simple microfabrication 
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Chapter 2

Stim ulated Brillouin Scattering  

Theory

2.1 Introduction

In this chapter, we begin by deriving the dynamics of stim ulated Brillouin scattering 

at ambient tem peratures. We then explore Brillouin dynamics when the acoustic 

dissipation rate is dramatically reduced at cryogenic tem peratures.

Stimulated Brillouin Scattering (SBS) is a nonlinear light scattering resulting from 

the interaction of traveling wave optical fields with traveling wave elastic fields. The 

interference between two counterpropagating optical waves in a medium produces a 

periodic density variation in the medium through électrostriction (Fig. 2.1a), which 

is the property of all dielectric materials to change shape (or develop strain fields) 

when exposed to electric fields [49]. This periodic variation in density of the medium 

results in the modulation of refractive index (or dielectric constant) of the medium 

through the photoelastic effect. Frequency detuning of the optical waves generates a 

moving interference pattern  and consequently a moving refractive index modulation 

(Fig. 2.1b). Dynamical Bragg scattering of light now occurs off this moving refractive
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Power 
pump

W =  Wg — w.

medium

Figure 2.1: S t im u la te d  B rillo u in  S c a tte r in g , (a) The interference between 
counter-propagating optical fields generates a period density variation along the 
medium through électrostriction. This in tu rn  leads to refractive index modulation 
through photoelastic effect, (b) As the counter-propagating optical waves are fre
quency detuned from each other, the beat pattern  moves and essentially acts like a 
moving Bragg mirror. This scatters and Doppler shifts the incident light a t higher fre
quency Up to light a t lower frequency Us and generates an acoustic wave at frequency 
Q, = Up — Us. (c) Resonant transfer of energy occurs between the counter-propagating 
beam when the velocity of the acoustic wave matches the longitudinal sound velocity 
in the medium, (d) The energy transfer spectrum  (or amplified Stokes light repre
sented by APg) has a characteristic Lorentzian line shape centered at the Brillouin 
frequency Hg.

index modulation, transferring energy from the higher frequency (pump) optical wave 

to the lower frequency (Stokes) optical wave (Fig. 2.1c). Resonant enhancement of 

both  the acoustic wave and back-scattered light occurs when the frequency detuning 

between the counter propagating waves is such th a t the velocity of the interference 

pattern  matches the longitudinal sound velocity in the medium (Fig. 2.Id ) . This 

characteristic detuning frequency at which the resonant energy transfer occurs is 

called Brillouin frequency Next we discuss how to determine Hg.

In a backward scattering geometry, a forward propagating pump hght having
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frequency and wavevector (wp, k{us)) is scattered to a backward propagating Stokes 

light {ujg, —k{us)) and a moving acoustic wave {Q,q{Q)). We assume linear dispersion 

relation k{u) =  u/vo{q{^)  =  D/ua) for both  the optical (acoustic) waves, where Vo{va) 

is the velocity and light (sound) in the medium (Fig. 2.2a). Since the higher frequency 

{ujp) pump light is transferred to lower frequency Stokes light (Wg) with the excitation 

of the acoustic wave it must satisfy the following energy conservation requirement 

(Fig. 2.2b):

ujp ujg — fig (2 .1 )

Moreover, since the acoustic waves are driven by the interference of the optical waves 

the acoustic wavevector must also satisfy the following phase matching requirement:

k{ujp) =  —k(ujs) — ç(D). (2.2)

These requirements along with the dispersion relations for optical and acoustic waves 

(assumed linear for a bulk system) set the frequency for the resonant Brillouin energy 

transfer:

^  2iüpV(x 2iüpV(i 2üjpVan
iZg =  — -----  — % — ,

1 +  fo /fo  c

c is the speed of light in vacuum and n  is the refractive index of the medium. Assuming

optical wavelengths of 1.5 qm, one obtains Brillouin frequency in the 10-100 GHz

range for most crystalline materials.

For heavily damped phonons, the dynamics of SBS typically gives rise to a non

linear scattering over a finite bandwidth, F, around fig. This bandwidth, which is 

typically in the 10-100 MHz [113], is determined by the lifetime (rph =  Stt/F )  of the 

acoustic waves in the bulk medium.
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Wavevector

Ü

Figure 2.2: P h ase  m atch ing and energy  conservation  requirem ents, (a) trav
eling wave optomechanical interaction, the acoustic and optical fields must satisfy 
phase-matching requirements set by the linear dispersion of the optical and longitu
dinal acoustic waves in a bulk medium, (b) The difference in frequency between the 
optical waves must m atch the frequency of the acoustic wave.

To explore such dynamics resulting from the nonlinear coupling of optical and 

acoustic waves, we s ta rt with a simple 1-Dimensional formalism th a t assumes plane 

wave optical fields

t) =  ^ ( z ,  +  C.C.

g , ( z , t )  =  +  c.c.

(2 .4)

(2 .5)

interacting with a plane wave acoustic field

u (z ,t)  =  g (z ,f)e '(« '-» ')  +  c.c., (2 .6)

where Q = tOp — uJs and q = kp-\- kg. The acoustic displacement field obeys the  elastic 

wave equation [114],

pil =  -rjii  -f -f /es, (2 .7)
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where r] is the damping constant, C  is the elastic constant and /  is the optical force 

density due to électrostriction. Here, 7] is related to the Brillouin linewidth as F =  r]/p 

and C  is related to the acoustic velocity as Va = y /C jp .  Note th a t for our current 

1-Dimensional calculation V =  d/dz .  /es, which is the divergence of the stress a  due 

to électrostriction, is given by [49]

fes{z, t) =  - V  • (J =  {E{z, 4  +  t )Ÿ )  •

(2 .8)

Note th a t ( . . . )  here denotes time averaged optical fields as the optical frequencies is 

much faster than  the acoustic response of the system. The relevant term  of /eg tha t 

drives the acoustic wave is then given by

f U z , t )  =  +  C .C . )

=  iqeQn^pAp{z, t)A*{z, f)e 4 9 z-nq ^  ^.c., (2.9)

where eo is the vacuum permittivity, n  is the index of refraction and p is the pho

toelastic constant. Substituting Eqns. (2.6) and (2.9) into the elastic wave equation 

(2.7) and assuming th a t the acoustic amplitude varies slowly in space and time, we 

obtain the following equation

- 2 i O ^  +  [Ql  -  a" -  i rQ )B  -  (2.10)

Note th a t the Brillouin frequency Üb = Q'fJa in the above equation. Typically acoustic 

waves at GHz frequencies are strongly damped and propagate much smaller distances 

compared to distance over which the optical driving force varies significantly. There

fore, we ignore the spatial derivative of the acoustic envelope field (i.e. d B / d z  -4- 0) 

and derive the following equation of motion for the envelope field B  at steady state
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in tim e (i.e. d B / d t  = 0)

, iqepn^p Ap{z)A*{z) .
( ) p ( n i - f f - i o r ) '   ̂ ' ’

This equation shows th a t the mechanical response to the optical driving is local. In 

other words, the phonon envelope, B{z),  follows the optical driving term  Ap{z)Al{z)  

at every point in space. We also see th a t optical forces due to électrostriction can be 

used to resonantly excite acoustic waves.

The spatio-tem poral evolution of the optical fields the wave equation derived from 

the Maxwell’s equations [1]

æ E , 1 d^E. 1
dz^ «2 (2 .12)

where V  =  eoAyE is the nonlinear polarization th a t results from the change in the

susceptibility (Ay) of the medium due to the presence of the acoustic fields. The

change in susceptibility stems from the refractive index change Ae =  n ‘̂ pS due to 

the photoelastic effect, where S  =  V u =  d u /d z  is the strain field. Therefore, the 

nonlinear polarization is given by

V  =  cqU^p  E.  (2.13)

The components of P  th a t act as driving term s for the pump field Ep and the Stokes 

field Eg are

Vp = +  c.c., (2.14)

V,  =  +  c.c., (2.15)

respectively. Notice th a t since the displacement field u oc E?, P  cc E^, meaning
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Brillouin scattering is a type of third-order nonlinear interaction. Now substituting 

Eqs. (2.4-2.5) and Eqs. (2.14-2.15) into the elastic wave equation 2.12 and assuming 

the optical envelopes varies slowly in space and time, we obtain the following equations 

for the optical envelope fields

dAp n d A p  _  qcoXp

d A ,  ^  ^  (2.17)
dz c dt  2nc

Now substituting the solution for B  from Eq. (2.11) to  these equations we can derive 

the following coupled mode equations a t steady state  in time

cl/lp _ ÂgSüjpCofaG;/! iff)
dz  2ncp (fig — — if i r )  ’

dAs _  iq^ujs^pn^P^ Ap\As\‘̂ 
dz  2ncp (fig — — if i r )

( 2  19)

Therefore, defining optical power as Pi = 2neocAiA*Aef[, where Aes is the effective 

transverse cross sectional area of the optical beam, we find these equations from Eqns. 

(2.18-2.19)

^  =  -GsPpPs,  (2.20)

^  =  -GsPpPs  (2.21)

where the Brillouin gain G g(fl) is given by

a  (O) -  ( r / 2 )  ̂ , .
^  v^é^pTA^ (ÜB -  n)2 +  (r/2)2 ’  ̂ )

where we have assumed Up Us = oj. Assuming undepleted pump (i.e. small energy 

transfer between the pump and the Stokes light so th a t Ip is essentially constant), we
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ca n  so lve E q n . (2 .23) to  g e t

f^(z) =  (2-23)

In the weak signal gain limit, i.e. G-Q[^)PpL <C 1, we can use Eq. (2.23) to obtain 

the following fractional change in Stokes power over the interaction length L

^  -  GB{n)PpL.  (2.24)

As explained before the Brillouin gain bandw idth in the weak signal limit is Lorentzian 

having the linewidth P determined by the acoustic dissipation rate. Therefore, en

ergy transfer spectrum  can not only be used to characterize G g((lg) but also get 

information about the acoustic damping rate P.

Such energy transfer measurements are relatively easy to perform within optical 

fiber-based systems due to long interaction lengths but are relatively challenging to 

measure within bulk crystalline solids because of typically weaker coupling strengths 

and shorter interaction lengths. Assuming a typical value of Gb ~  0.5 W~^m“  ̂ for 

a silica optical fiber and Pp =  100 mW, we see th a t it is possible to get APs/Ps > 1 

(i.e. large energy transfer from the pump light to the Stokes light) using an optical 

fiber with L > 20m. Therefore, energy transfer measurements to determine Gb is 

relatively easy in such fiber based systems because long fibers with very low optical 

losses (~0.2 dB /km  [21]) are readily accessible. However, such measurements are 

significantly challenging within crystalline solids whose lengths are typically in the 

range of a few millimeters because APg/Pg is usually of the order of 10“ .̂ Sensitive 

measurement technique to measure small Brillouin gain within crystalline materials 

is discussed in Chapter 3.

In summary, the combination of électrostriction and photoelastic effect gives rise 

to resonant energy transfer between counter-propagating optical waves as well as
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excitation of acoustic waves resulting in a phenomena known as stimulated Brillouin 

scattering. While we used a simple 1-Dimensional formalism to derive the salient 

features of Brillouin scattering, a more generalized Hamiltonian treatm ent will be 

presented in Section 2.4.

2.2 C onventional B rillouin  Lim it

In the theoretical treatm ent above, we assumed th a t the GHz acoustic waves are 

strongly damped at ambient tem peratures. Typical acoustic dissipation rates ( r / 27r) 

of 10-100 MHz within most glasses/ crystalline solids would correspond to acoustic 

decay lengths (or coherent lengths. Lac) of 10-100 pm.  In this limit of Brillouin 

interaction when L ^  C  L, which we call the ‘Conventional Brillouin Lim it’, we 

can ignore the acoustic propagation (i.e. by setting d B j d z  -4- 0) while deriving 

the dynamics of stim ulated Brillouin scattering. However, acoustic dissipation rates 

within crystalline solids can plummet a t low tem peratures [75]. In such scenarios, 

the acoustic propagation can no longer be ignored and the response of the acoustic 

envelope {B{z))  at a given position now depends on the optical forcing function 

throughout the device length, meaning the phonon response to optical driving is 

non-local in space.

W hen coherence length of acoustic waves a t low tem peratures become comparable 

to the length of a bulk medium, traveling wave treatm ent with left and right moving 

acoustic waves (i.e. B l {z) and B r {z )) with self-consistent boundary conditions could 

be used to describe stim ulated Brillouin interactions. However, when the coherence 

length of acoustic far exceeds the crystal length, the left and right moving acoustic 

waves form standing waves or macroscopic discrete acoustic modes. Next, we explore 

this regime when the acoustic coherence far exceeds the length of the crystal.
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Figure 2.3: C o h e re n t-p h o n o n  lim it, (a) Acousto-optic interaction between travel
ing wave pump (Ap) and Stokes light (A^) with discrete standing wave acoustic modes 
(bm)- (b) Multiple standing wave acoustic modes within the  phase-matching band
width resonantly scatter energy from the pum p waves to the Stokes wave, resulting 
in a multi-peaked spectrum. A dapted from Ref. [106].

2.3 C oherent-phonon Lim it

At low tem peratures, the coherence length of GHz frequency acoustic waves w ithin 

bulk crystalline solids can be many times longer (order of meters) than  the length L  of 

the solid (order of cm) [106]. We call this limit of Brillouin interactions when Lac L 

as the ‘Coherent-phonon lim it’. As discussed above, the conventional assumption tha t 

the mechanical response to optical driving is local is no longer valid. The acoustic 

waves with long coherence lengths reflect from the planar surfaces of the medium 

to form standing wave phonon modes much like the optical modes in a Fabry-Pèrot 

resonator (Fig. 2.3a). In this section, we will show how the character of energy 

transfer in this new regime of high-coherence for phonons (Fig. 2.3b) differs from 

th a t in the Conventional Brillouin limit, where acoustic waves have a relatively short 

coherence length.

To delineate the salient features of Brillouin interactions in the coherent-phonon 

limit, we s ta rt by looking a t the coupled mode equations. An alternate formalism 

based on Hamiltonian framework to derive such coupled mode equations will be pre

sented in Section 2.4. The interaction of counter-propagating optical fields (traveling
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waves)

Ep{z, t) = Ap{z, t)g4tpz-wp!) +  c,c _ (2,25)

E,{z , t )  = A ,(z ,i)e ‘<-*''"-"“'> +  C .C . ,  (2.26)

with the standing wave acoustic modes (ç„, f2„)

Um{^, t) = fe™(t)(e'‘'”'" +  e-'«’"")e - '^ ’“‘ +  c.c. (2.27)

is described by the following coupled-amplitude equations

^  =  - i ( n „  -  n )5 „  -  - i j  dz (5„™)*e-^’’“M :.4p. (2.28)

^  =  -*  (2.29)
m

¥  “ = ■* (2.30)
m

Here, represents the strength of Brillouin interaction of the optical fields to 

a standing wave acoustic mode (see Chapter 2.4.3 for details) and A q ^  =  

q{flrn) — (A:(cjp) — {—k{üüs)) = qm — kp — ks is the phase-mismatch between the optical 

driving and the right moving component of the standing wave acoustic mode. The 

left moving component does not satisfy the phase-matching requirement for the élec

trostriction mediated acousto-optic interaction. We assume th a t T^ for each acoustic 

mode incorporates all forms of acoustic damping mechanisms such as intrinsic losses, 

scattering at the surfaces, diffraction losses, and other nonidealities of the system. 

The integral over z in Eq. (2.28) suggests th a t the acoustic response to optical driv

ing is non-local. The uncertainty in the acoustic wavevector due to  the finite length 

of the bulk medium gives rise in a non-zero phase matching bandwidth. Multiple 

discrete acoustic modes within the phase-matching bandwidth can mediate Brillouin

2 0



coupling between the pump and Stokes light fields (Fig. 2.3b). This salient feature 

of the ‘coherent phonon lim it’ arises due to  the integral term  in Eq. (2.28).

The actual set of standing wave acoustic modes within the phase-matching band

width for the bulk crystalline optomechanical system not only depends on the geome

try  (i.e., how you shape the boundaries of the bulk medium) but also on the anisotropy 

of the crystal. We will discuss this problem in greater detail in C hapter 3.2. Nev

ertheless, frequencies of these standing wave acoustic modes in 1-dimension can be 

approximated by fitting acoustic half-wavelengths (Aac) inside the crystal length (L) 

(i.e. mAac/2 = L). So the frequency of the wA' acoustic mode assuming a linear 

acoustic dispersion {q{H) = kl/va) is Ctrn =  Stt x (mUa)/(2L), where Va is the longitu

dinal sound velocity.

In the limit of weak signal gain and undepleted pump (i.e. APs(O) Ps{L) and 

Ap{z) % constant), we obtain the following equation for the acoustic mode amplitude 

and the Stokes power change for a crystalline medium of length L

^  (4 ) •

f i(0 )  -  R ( i )  =  P .(0,P ,(L ) Ç  2 Z r y - Q . y ' ( r . / 2 ) . " '" '  ( 4 )  ’

(2.32)

where the phase mismatch Aqm = qm ~  kp — kg — k^m/'^a ~  2wp/uo to  an excellent 

approximation. Eq. (2.32) shows th a t the spectrum  of the power transfer has multiple 

Lorentzian resonances with peak amplitudes modulated by a Sine square envelope 

(Fig. 2.4b). Note th a t the multi-peaked spectrum  obtained in the coherent phonon 

limit is markedly different from a single Lorentzian response obtained in the low 

coherence limit (Fig. 2.4a).

In summary, stim ulated Brillouin scattering measurement in the coherent-phonon
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Figure 2.4: Sch em atics com paring C onventional B rillou in  L im it to
C oheren t-ph onon  lim it, (a) Sketch comparing acoustic coherence length to  the 
crystal length (L) (left). Acoustic dispersion relation q{ü) and the 2D intensity map 
(green) showing the acoustic response to an applied forcing function (middle). The 
optical wavevector difference between the pump and the Stokes wave AA(Ü) is plotted 
on top of the intensity map and the intersection of this with the acoustic response 
yields a Lorentzian frequency response (projected left). Since generation of Stokes 
photons coincides with the generation of acoustic waves, APg(f^) exhibits the same 
Lorentzian response (right), (b) Sketch showing formation of discrete standing wave 
acoustic modes when the coherence length is much longer than  the crystal length 
L  (left). These acoustic modes are separated by the acoustic free spectral range of 
27t X Va/2L. Discretized acoustic dispersion relation qm(^m) and 2D intensity map 
(green) showing the acoustic response to an applied forcing function (middle). Each 
acoustic response has frequency broadening due to  acoustic damping and a sinc^ 
broadening in wavevector due to the finite length of the crystal. The optical wavevec
tor difference AA(Ü) th a t intersects the 2D intensity map of the discretized acoustic 
response yields a sinc^ acoustic response (projected left). Since generation of Stokes 
photons coincides with the generation of acoustic waves, APg(D) exhibits the same 
sinc^ frequency response. A dapted from Ref. [106].
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limit has dynamics and spectral response th a t is quite different from the Lorentzian 

Brillouin gain spectrum  observed in the conventional Brillouin limit. Since traveling 

waves optical fields interact with long-lived standing wave acoustic modes (i.e with 

Lac L) the acoustic response to optical driving in non-local in space. This op

tomechanical system in which free-space propagating laser beams are used to access 

Brillouin active acoustic modes is quite different from conventional cavity optome

chanical systems th a t typically have discrete cavity modes for both light and sound. 

However, it is possible to  make analogies between our optomechanical system and 

conventional cavity optomechanical in some regime of optomechanical interaction by 

writing down a Hamiltonian and defining param eters such as single-photon coupling 

strength and cooperativity. We discuss this in detail in the next section.

2.4 H am ilton ian  T reatm ent

In this section, we give a brief overview of the Hamiltonian treatm ent, which can 

be used to derive coupled mode equations th a t describe the dynamics of Brillouin 

scattering both  in the coherent-phonon limit and the conventional Brillouin limit. 

In the coherent-phonon limit, we can use this generalizable Hamiltonian treatm ent 

to define coupling rates, nonlinear susceptibility, and cooperativity, perm itting us to 

make analogies with the more familiar multimode cavity optomechanical systems. 

Note th a t the Hamiltonian treatm ent outlined here closely follows the supplementary 

section of our manuscript Ref. [106].

The to ta l Hamiltonian H  of our optomechanical system

H  = + + (2.33)

where and is the Hamiltonian of the optical fields, is the Hamiltonian

23



of the acoustic fields, and is the interaction Hamiltonian, respectively.

=  / B ‘(r)B‘(r)dr + A  [  n ‘(r)/3«(r)D‘(r)dr, (2.34)
2/io J 2eo J

where D (r) is the electric displacement field operator, B (r) is the magnetic field 

operator and e^(r) =  l//3J^(r) is the relative dielectric constant tensor.

H^ = +  y  is« (r )c ‘̂ “ (r)S«(r)dr, (2.35)

where 7 r ( r )  is the conjugate momentum of the acoustic displacement field opera

tor u ( r ) ,  p{r) is the density, is the elastic constant tensor and S"'^{r) =

l/2{du^{r)/dr^  +  du^{r)/dr^)  is the strain operator.

The coupling between light and sound arises in bulk medium arises because (r) 

depends on u (r). Therefore, u (r)) =  u (r)), where 1//3,. is the original

purely electromagnetic dielectric constant tensor and u (r)) =  ig the

correction to the inverse dielectric constant tensor due to the photoelastic interaction 

within a bulk medium [115]. The photoelastic constant tensor relates changes 

in the strain  to changes in the inverse dielectric constant of the medium due to 

électrostriction/ photoelasticity mediated optomechanical coupling. Therefore, the 

interaction term  is given by

= T  /  r»'(r)^‘̂ (r)0‘(r)dr,= [  T o '(r )0 ^ (r)p ‘̂ “ (r)S'''(r)dr. (2.36)
2eo J J 2eo

This Hamiltonian framework along with appropriate normal mode expansions, 

optical and acoustic mode normalization, and commutation relations can be used to 

derive Hamiltonian for both the coherent-phonon limit and the conventional Brillouin 

limit. Next, we discuss the Hamiltonian for our system in the coherent-phonon limit.
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2.4 .1  C oh eren t-p h on on  L im it

The dynamics of Brillouin scattering in the coherent-phonon limit, where scattering 

between two counter-propagating optical fields is mediated by a coherent phonon, is 

reminiscent of a multimode cavity optomechanical system in which a phonon mode 

mediates interaction between two distinct optical cavity modes. The interaction 

Hamiltonian for such system is described by h{gi2d2o\^^ +  where Ui, <2 2 ,

and b are the annihilation operator for the Stokes-photon, pump-photon, and the 

phonon mode, respectively [116]. However, since free-space optical beams travels 

directly through our bulk crystalline resonator, no optical cavity modes are formed 

(for simplicity, we assumed negligible refiections at the surfaces of the bulk crystal). 

Consequently, each coherent phonon mode (6^) couples to a continuum of traveling 

optical waves. Therefore, the to tal interaction Hamiltonian for the coupling of dis

crete phonon modes to a continuum of counter-propagating pump and Stokes waves 

in the coherent-phonon limit is given by

i ï “* =  J 2  j  k’)al,aMbr^ +  H.c., (2.37)
m

where gm{k, k'), which we call the geometric coupling rate, characterizes the strength 

of the optomechanical interaction (see Appendix A). Unlike the case of discrete opti

cal cavity modes with unitless mode amplitude operators, here the mode amplitude 

operator ak has units of ^/Length and gm has units of ^/Length • Time^^ [107].

The interaction Hamiltonian w ritten as a sum over continuum of optical modes 

in Eq. (2.37) looks rather complicated. We chose this A:—space representation to 

make analogies between our optomechanical system with the more familiar case of a 

multimode optomechanical system consisting of discrete optical cavity modes. Despite 

these similarities, coupling to a continuum of traveling-wave optical fields in our 

system gives rise to different dynamics such as optomechanical coupling th a t depends

25



on phase-matching and optical field amplitudes th a t vary as a function of space within 

the crystal. For instance, for typical experimental parameters, the Stokes optical field 

is amplified along the axis of propagation at the expense of pump field. Therefore, it 

is more natural to formulate the Hamiltonian of our system in real space using mode 

envelope operators [107,115]

The interaction between traveling wave pump photon (Dp(r), kp, uop) w ith counter- 

propagating Stokes photon ( D s ( r ) , m e d i a t e d  by a standing wave acoustic 

wave (U ^ (r) , results in the spatiotem poral evolution of the optical fields.

For the purpose of deriving the nonlinear susceptibility, we begin by expressing the 

Hamiltonian of our traveling-wave system as a sum over modes in /c-space, as follows:

=  y  d/c lTWp{k) +  y  dA: hws{k) ^a\j^ask +  , (2.38)

= + (2.39)

=  k')al ,a, , ,b„  +  H.c.. (2.40)
m

We convert this Ac-space Hamiltonian into an equivalent Hamiltonian over real-space 

(z) as follows:

f f ”"* = J  dz h fAl{z)ùp^^Ap(z)  +  0 +  J  dz h (^A*(z)w«,z^«(^) +  ^  , (2-41)

H'^ = Y , H n m ( b l b „  + ^ y  (2.42)

= hg^{z)e'^'>”'- ' ‘'‘- ’“^^Al{z)A.{z)bm +  H.c.. (2.43)

Here, our real-space operator Aj{z)  is define as Aj{z)  = J   ̂ for j  =

p and s, is the mode amplitude operator for pump and Stokes, respectively. In this

case, the mode amplitude operators have the units of 1 / ^/Length and the operator 

A^{z)A{z)  represents photon number per unit length (or photon number density).
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Note th a t in the real-space description, ~  ivodz and = ujs +

are spatial operators obtained after Taylor expanding the dispersion relations for the 

optical fields ujp{k) and cos(k) in Ac-space. g^{z)  is the single-photon coupling rate 

th a t depends on the transverse mode overlaps of the acoustic and optical fields. For 

details on this transform ation see Appendix A and Appendix B.

2 .4 .2  N on lin ear o p tica l su scep tib ility

In this section, we derive the nonlinear optical susceptibility resulting from the 

acousto-optic interaction in the coherent-phonon limit. Optical susceptibility permits 

us to relate optomechanical scattering rates to coupling rates and acoustic dissipa

tion rates. We begin by writing down the coupled mode equations derived from the 

real-space Hamiltonian of our system in Eqns. (2.41-2.43).

Using the Heisenberg equations of motion (6^(t) =  —(i/h)[bm, H], and A^{z , t)  =  

— {i/h)[A^, H]) and commutation relations ([6^, 6 ]̂ =  6mn, and [A^(z, A), Ay (z', t)] =  

d^Yd{z — z')), we can write down the equations of motion for the phonon mode 

amplitude operator and the optical mode envelope operators as

=  -iQmbm - t  [  dz {g^Ye-'^ -’^AlAp -  T J 2 ,  (2.44)
Jo

dtAp =  —iujp^zAp — i g ^ A g b m - ,  (2.45)
m

=  - i Ù ^ , , A ,  -  i  ( 2 . 4 6 )

m

Here, Aq = — kp — kg. Recall, th a t the spatial operators tbp̂ z =  Wp — iVodz and

=  (Ug +  iVodz. In Eq. (2.44), we phenomenologically added a phonon dissipation

rate  F ^ /2  so th a t it models all forms of phonon losses such as intrinsic losses in the 

bulk medium, losses at the surface due to roughness, losses due to diffraction and 

so on. Finally, after factoring out the fast-oscillating component by letting bm(t) =
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where Q = üüp — ujg is the frequency detuning between the pump and the 

Stokes fields, and = A^{z , t )é '^A  ̂ we obtain the following spatiotem poral

evolution for the phonon mode amplitude operators and the envelope fields

=  - i ( ^ m  -  n ) L  -  - T  dz { g ^ y e - ' ^ ‘>^Â\Âp, (2.47)

+  Vpd^Ap =  - j  y ]  g ^e ' ‘̂ ^ Â , K ,  (2.48)
m

dtA, -  Vpd^A, =  - Î  y](5o”‘)*e-’^"^6L4p. (2.49)
m

We have assumed negligible optical absorption inside the crystalline medium because 

the optical crystals are transparent. We also assume that the mode profiles are 

uniform along z such th a t is a constant. If we now make the undepleted pump ap

proximation (Ap(z, t) % Ap) and small signal gain approximation (APg(O) Ps{L)), 

Eqs. (2.47) and (2.49) result in the following steady-state equations for the phonon 

mode amplitude and the Stokes field envelope

(T ) .

(2.51)

Eq. (2.51) can be further simplified to  calculate Stokes field envelope at a =  0 as

i . ( 0, .  i . i o  -  E  M g  b - T %  ( T ) .

Using Eq. (2.52) and the expression for the optical power P°^*(z) =  hcjjVoAl^(z)Ay(z),
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the Stokes power exiting the system at z =  0 is given by

P M .  p . m *  P ,(0)P .(L ) E  (n -  ( T )

(2.53)

In deriving the above expression, we have ignored higher order terms proportional to 

\g^\'^PpL'^/(JPuj‘̂ v^) because we are considering the case of weak signal gain.

2 .4 .3  S in g le -P h o to n  C oup lin g  R a te

In a prototypical cavity optomechanical system consisting of a single optical cavity 

mode interacting with a single mechanical mode, single-photon coupling strength go 

quantifies the strength of interaction between a single photon and a single phonon. We 

seek to define a similar quantity in our optomechanical system where a standing wave 

mechanical mode interacts with counter-propagating free-space optical beams. The 

Hamiltonian treatm ent presented earlier naturally allows us to  define such a single

photon coupling rate for our system, g^ .  In our system, optomechanical coupling to 

a mechanical mode shifts the optical dispersion bands (i.e. AQ  = A{ujp{k) —ujs(k))). 

Therefore, g'^ quantifies this shift in the dispersion bands for the pump and Stokes 

waves simply due to a single excitation (or a single phonon) of the mechanical mode 

in our system.

This single-photon coupling rate for the électrostriction mediated optomechanical 

coupling between counter-propagating free-space optical fields and a standing wave 

phonon in our system is given by Eqn. (A. 20)

^ J drx(i)‘ (r))*i)^(r)p«“ (r) ( ^ ^  +  ■ (2.54)

Since the transverse mode profiles for the traveling wave optical fields inside the 

crystal (for example, Gaussian laser beams) can vary along the propagation direction,
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the coupling rate depends on space. For now, it is instructive to derive an approximate 

expression for the coupling rate to extract dependencies between the coupling rates 

and m aterial parameters. To this end, we assume th a t the transverse mode profiles 

of both  the optical and acoustic waves along the propagating direction (z-direction) 

remain invariant. This, for instance, is a good approximation for Gaussian optical 

beams when the crystal length is much shorter than the Rayleigh range (i.e. the 

beam diffraction is negligible inside the crystal). For simplicity, we also assume tha t 

the pum p field. Dp, and the Stokes optical field, Dg, are both co-polarized along the 

z-axis, and the standing wave phonon mode, is longitudinally polarized along 

z-axis. In this case we can greatly simplify Eqn. (2.54) to

5™ ~  Jd ri(D ," (r ))A (r )p “ “ C/^(r). (2.55)

In deriving the above expression we assumed th a t the dxU^,dyU^  <C QmU^- The 

transverse derivatives are small if the transverse acoustic mode profiles (typically ^  

tens of microns for our experimental system) are much larger than  the wavelength 

of phonons ( ^ <  1 //m). The relevant photoelastic constant = P1 3 ) depends on

the anisotropy of the crystal as well as the crystal axis along which the longitudinal 

acoustic waves propagate.

Assuming plane-wave optical and acoustic fields with transverse area. A, we can 

use the normalization conditions in Eqs. (A. 13), (A. 14), and (A. 18) to obtain the 

following simplified expression for the coupling rate

where n  is the refractive index and p is the density of the bulk medium. In deriving 

the following expression, we assumed ujp cz ujg = u  and the acoustic wavevector

Qrn — kp kg — 2üJpïlIC.
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Param eters Te02 Quartz

L 1 mm 1 mm
A 7T X (20 j i ra f 7T X (20 yUm)̂
n 2.33 1.55

Pl3 0.34 0.27
P 6040 kgm“ ^ 2648kgm“^
A 1549 nm 1549 nm
ÇI 2tt X 12.2 GHz 27T X 12.7 GHz

\ € \ 27t X 720 Hz 2tt X 250 Hz

Table 2.1: Calculation of single-photon coupling rate.

As an example calculation, we compute the single-photon coupling rate for z-cut 

Te02 and z-cut Quartz crystal in Table 2.1.

2 .4 .4  F ree-space C o o p era tiv ity

In linear cavity optomechanics, cooperativity is a figure of merit th a t quantifies the 

strength of optomechanical coupling in presence of optical and acoustic damping. 

For an optomechanical system having coupling rate g, optical dissipation rate /<, and 

acoustic dissipation rate F ^ , the cooperativity C  is defined as C =  4^^ /(/tF^).

The interaction Hamiltonian for a typical cavity optomechanical system is nonlin

ear and is the form g^a^aij)+ , where go is the single-photon coupling strength and

à {b) is the annihilation operator for the optical (acoustic) mode. Using an external 

optical drive field, this interaction Hamiltonian can be linearized to obtain a bilinear 

Hamiltonian of the form form ga^P H.c. or gab^ +  H.c.. Here, g = -\/^go and ric is 

the cavity enhanced coupling rate and fic is the average intracavity photon number 

due to the external drive field [117]. So it is in this linearized regime th a t we can 

define C = 4^^/(/<F^) =  4nc^g/(/{F^).

To make an analogy between our optomechanical system consisting of free-space 

laser beams instead of optical cavity modes, we seek to define cooperativity in our 

system. In the earlier section 2.4.1, we derived the interaction Hamiltonian for our
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system and discovered th a t the interaction Hamiltonian, which has a form goa^allA, is 

analogous to the nonlinear Hamiltonian th a t of a multimode optomechanical system. 

However, assuming undepleted pump, it is possible to linearize this system and define 

what we call ‘free-space cooperativity’

^  PpL'^ba? (2.57)
bùJpVggV gpT'm

Here, Pp is the power in the pump optical wave, L  is the length of the bulk medium, 

g ^  is the single-photon coupling rate, Ugg (ugp) is the group velocity of the Stokes 

(pump) wave and is the acoustic damping rate (see Appendix C for a complete 

derivation of free-space cooperativity). The analogy between the and C  becomes 

apparent if we consider an optical cavity of length L  with light only making a single 

pass. In this case, the standard cavity-optomechanical definition of cooperativity 

C = 4hc|5foP/(rm^), where k, =  ^Vgg/L and %  =  PpL/{hu)pVgp) give us the same 

cooperativity derived in Eq. (2.57). Note th a t when cooperativity equals 1 the 

system can undergo self-oscillation.

2.5 C onclusions

In summary, we used a generalizable quantum  Hamiltonian treatm ent to describe 

the dynamics of optomechanical coupling when free-space laser beams interact with 

standing-wave acoustic modes within a bulk acoustic medium. We also used this 

Hamiltonian treatm ent to define optomechanical coupling rates, cooperativity, and 

nonlinear optical susceptibility. In C hapter 3, we perform experiments to measure 

these im portant figures of merit.
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Chapter 3

Brillouin Coupling to Bulk  

A coustic Waves using Free-space

Laser Beam s

3.1 Introduction

W ithin crystalline medium, acoustic dissipation plummets at low tem peratures, lead

ing to the formation of macroscopic standing wave acoustic modes. Using specially 

engineered cavities made out of crystalline quartz to confine such bulk acoustic modes, 

Galliou et. al. dem onstrated acoustic Q-factors th a t exceed > 1 billion for 200 MHz 

acoustic waves at liquid Helium tem peratures [100,101]. Electromechanical coupling 

was used to access such low-loss phonon modes within quartz, which is piezolec- 

tric along certain crystalline axis. This result combined with a number of stud

ies [74, 83-95] of intrinsic acoustic loss mechanisms in a wider variety of non-piezo 

electric crystals such as diamond, silicon, sapphire, and CaF2, suggested an immense 

potential for reaching intrinsic levels of acoustic dissipation within bulk crystals. Such 

low-loss phonons could then be utilized for applications ranging from precision metrol
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ogy [103] to  tests of fundamental physics [102]. While piezoelectricity is absent in a 

wide variety of crystals, photoelasticity is present in every bulk medium. Therefore, 

optomechanical coupling using Brillouin interaction would allow us to access low-loss 

phonons within practically any transparent solids as the basis for new technologies 

and fundamental scientific studies.

In this section, as a first step toward efficient optical control of such low-loss 

phonons, we dem onstrate Brillouin coupling between free-space laser beams and low- 

loss bulk acoustic modes of a crystalline resonator. Optomechanical coupling to such 

‘Brillouin-active’ phonon modes perm its us to perform phonon-mode spectroscopy, 

allowing us to characterize the mechanical properties of our optomechanical system. 

We will see in Section 3.5-3.6 th a t these measurements not only allow us to explore the 

intrinsic limits of acoustic dissipation but also provide crucial information necessary 

to create a new breed of cavity optomechanical system th a t utilizes bulk acoustic 

phonons.

To efficiently access such low-loss Brillouin-active phonons modes with light, we 

need to  shape the surfaces of the crystal to  confine phonons as well to  engineer 

acoustic mode profiles to produce good acousto-optic overlap. Next, we present the 

design principles used to form such phonon-confining cavities.

3.2 A cou stic  R esonator D esign

The acoustic beam propagation within our system is reminiscent of optical beam 

propagation in the paraxial limit. This is because Brillouin-active phonons at high 

frequencies have wavelengths (Aph < 1 |um) th a t are much smaller than  the system 

dimensions (mm-scale). Propagating acoustic beams having coherence lengths longer 

than the crystal dimensions, reflect off the planar surfaces of the crystal to form 

standing wave acoustic modes. This is analogous to the formation of standing wave
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a Planar acoustic resonator b  Plano-convex acoustic resonator

crystal

diffraction losses

crystal

Figure 3.1: Shaping th e  surfaces o f  a crysta llin e  resonator for ph onon  trap 
ping. (a) Acoustic waves th a t reflect off the planar surfaces of the crystal suffer 
acoustic diffraction losses, (b) By shaping the acoustic resonator into a plano-convex 
geometry, we can m itigate diffraction losses to confine phonons laterally and produce 
stable acoustic cavities th a t support long-lived phonons. A dapted from Ref. [106].

optical modes within a Fabry-Perot cavity. Similar to diffraction losses of optical 

modes w ithin a Fabry-Perot cavity, the acoustic modes w ithin a flat-flat crystal suffer 

from losses due to acoustic diffraction (Fig. 3.1a). To address this problem, we 

need to  shape the boundary of the crystal to mitigate acoustic diffraction and “tra p ” 

phonons in much the same way as using curved mirrors to  confine light in an optical 

Fabry-Perot resonator (Fig. 3.1b).

While the formation of stable cavities to confine light has been well studied in 

optics [118], to  our knowledge, analogous criteria for acoustic beam stability has not 

been previously explored. Unlike optical beam propagation in vacuum, acoustic beam 

propagation within crystalline solids, can be nontrivial due to  the anisotropy of elastic 

constants [119]. Nevertheless, by understanding the acoustic beam  propagation within 

anisotropic solids, we show th a t is is possible to adopt well-known optical design 

principles used to form stable Gaussian beam  resonators to design stable acoustic 

resonators.
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kZ

U

quasi-shear

quasi-longitudinal

k X

W

Figure 3.2: Slow ness surface o f  z-cut T e02  in XZ plane. For an acoustic plane 
wave propagating along n, one obtains three different sound speeds corresponding 
to three orthogonal polarizations (one longitudinal and two transverse waves) using 
Christoeffel’s equation. The plot of inverse sound speed as a function of the prop
agation direction yields the slowness surfaces (blue, red and green). Adapted from 
Ref. [106].

3 .2 .1  E lastic-w ave th eo ry

A rich spectrum  of standing wave acoustic modes exists when the boundaries of a 

crystalline medium are shaped to confine longitudinal acoustic phonons. For such 

systems, the actual set of standing w ave phonon modes for a crystalline medium 

depends on the geometry (i.e., the shape of boundaries) and also on the cut and 

anisotropy of the crystal. In this section, we will describe an approach to  finding the 

bulk-acoustic modes in a shaped crystalline medium.

The propagation of elastic waves in solids is described by the elastic wave equation 

[114,120]:
dUr

^ijlm Q (3.1)
dxjdxi

where Ui is the  i‘  ̂ component of acoustic displacement vector, Cijim is the isothermal
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elastic constant tensor and p is the density of the medium. For a plane wave u =  

UQghk.r-wt) propagating in the direction n, where k  =  /cn, Eq. (3.1) reduces to  the 

following eigenvalue equation:

^  2)

where v = u / k  is the phase velocity of the acoustic wave. The nontrivial solutions 

to the equation above determines the dispersion relation for the acoustic wave in the 

medium. For each direction n, solution to the eigenvalue equation yields three orthog

onal eigenvalues and eigenvectors corresponding to the three speeds and polarizations 

of the acoustic waves. The plot of l / v  (or k/uj) as a function of n, yields the slowness 

surface which describes the magnitudes and directions of the phase as well as group 

velocities (see Fig. 3.2). Group velocity direction points in the direction normal to 

the slowness surface. W hen n lies in certain symmetry directions, the group velocity 

direction is in the same direction as the phase-velocity direction (or direction of n). 

Only in this case we get one longitudinally polarized and two shear polarized acoustic 

waves. Generally however the waves are quasi-longitudinal ( “longitudinal like”) or 

quasi-shear ( “shear like” ).

In piezoelectric crystals elastic wave equation and electromagnetic equations are 

intimately coupled. This type of piezoelectric coupling affects acoustic propagation 

in solids because slowness surfaces are modified upon such coupling [114]. We have 

ignored this effect because the modification to  slowness surfaces (corresponding to 

longitudinal acoustic waves) due to piezoelectric coupling is negligible in the crystals 

we measured experimentally in Section 3.6.

Starting with the Christoffel equation in Eq.(3.1), we will derive an equation of 

motion for an elastic wave in the paraxial limit. This equation, which is analogous to  

paraxial Helmholtz equation for an electromagnetic field, can then be used to show
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th a t plano-convex acoustic resonators support Hermite-Gaussian-like mode families. 

We can then use adopt the established methods from optics to  design stable acoustic 

cavities; in such stable cavities transverse spatial confinement occurs because the 

reflections from the resonator surfaces can m itigate the effects of diffraction.

3 .2 .2  A n a ly tica l S ta b ility  C riterion  and A n iso tro p y  P aram 

eter

Before we discuss design guidelines for acoustic cavities, let us begin by considering 

the well-known problem of designing stable cavities for light. W ithin the framework 

for Gaussian beam optics, we expect only certain radii of curvatures to form stable 

cavities [121]. For a Fabry-Perot cavity in vacuum having two mirrors with radii of 

curvatures Ri  and R 2 th a t are separated by a distance of L, the stability criteria is 

given by 0 <  giÇ2 < 1. Here, gi is the stability param eter for each mirror is defined 

as gi =  1 — L/R i{ i  = 1, 2).

We seek to formulate similar stability parameters when designing acoustic cavities 

th a t support. However, correct formulation of gi and ^ 2  for elastic wave propagation 

must account for the anisotropy of elastic constants, which lead to nontrivial acoustic 

beam propagation within crystalline solid. Unlike slowness surfaces for optical waves 

propagating in free-space, acoustic slowness surfaces are not necessarily symmetric or 

even parabolic [114,122,123]. Nevertheless, in the paraxial limit, it is possible to for

mulate stability criteria th a t closely mirror the stability criteria for optical resonators 

along certain crystalline axes about which the slowness surfaces are parabolic and 

symmetric. In this case, the stability parameters for an acoustic resonator of length 

I/ac having two convex surfaces with radii of curvatures Ri  and R 2 is given by
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One round-trip

FT f  ...............X
Propagate

IFT ------------

Reflect

HI r.................
Propagate

IHI X"..... ......\

Reflect
z=L z~L

J*

Figure 3.3: N u m e ric a l B ea m  p ro p a g a tio n . Schematics depicting algorithm used 
to numerically propagate the beam during a single round trip  inside the crystal. 
Adapted from Ref. [106].

where % is the “anisotropy-constant” th a t includes the effect of propagation of acoustic 

beam in an anisotropic medium. The range of radii of curvatures th a t can form a 

stable acoustic cavity is then given by the condition 0 <  gigg <  1 (see Appendix D for 

the derivation of the stability criterion and anisotropy parameters). Note th a t these 

design principles can be used to engineer stable cavities along crystalline axes th a t 

produce parabolic and symmetric dispersion surfaces. More generally, one can use 

numerical beam propagation techniques to  design phonon cavities along crystalline 

axes th a t produce non-trivial dispersion surfaces, as well be described in the next 

section.
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3 .2 .3  N u m erica l B eam  P rop agation : F in d in g  S tab le  A cou s

tic  M od es

An acoustic field propagating in the z direction, can be w ritten in the

plane wave basis as [119]

(
1 \  3 ÇOO poo poo ^   ̂ /  k k \

J  ^  J  J  ky,u))(T

X ^i{ujt-kxX-kyy-k^z) ̂ (3-4)

where n  indexes the three slowness surfaces, d” {k^/uj, ky/uj) is the polarization vector 

for the plane wave propagating along {k^jky^k"^), where A:” is determined by the 

corresponding slowness surfaces, and (jf'ikx^ky^uj) corresponds to the amplitude for 

each polarization. For propagation along any other direction than  z direction, we 

rotate the coordinate system (and the elastic tensor) such th a t the z-axis always 

corresponds to the direction of beam propagation. To find resonant acoustic modes 

of a system, we are looking for solutions of the form u(x, y, z,A) =  u(x, y, z)c4^^, 

where kl is the frequency of the acoustic mode. Once the slowness surfaces. A:” , and 

the corresponding polarization vectors, d” , are calculated using Eq. (3.2), we calculate 

the amplitudes, </)” , for the plane wave decomposition of the input field u°(a:, y, z =  0) 

a t z=0 using the following equation [119]:

---------------- r—  — — — — — — n ----------------   (3.5)
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where t l(kx,  ky, Q) is the Fourier transform of the initial displacement field at plane 

z = 0 and is given by:

*00 /*oo

ky, Q ) =  dt dx dy u  (x, y , z  = 0)e" ei 0 . t  i { — o j t + k x X + k y y ) (3.6)
-00 o —00

and by obtained similarly by perm utation of indices in Eq. (3.5). Once the 

amplitude coefficients </)” of the input field at z =  0 is calculated, field at z =  E is 

calculated using Eq. (3.4). Then a phase-profile corresponding to spherical geometry 

is applied to each displacement component:

%:;(%, %,T) u^{x,y ,

= (3.7)

u^(x,y,

where kt\ =  , kt2 =  n / % ,  and ki = Vt/vi are the wave-vectors of the two shear

polarizations and one longitudinal polarization for a plane wave propagating along 

the z direction. We assume th a t the spherical surface of the resonator has a radius of 

curvature given by R. After computing the phase-shift due to the boundary, we re

compute the projection amplitudes and propagate the beam further by a distance of 

L. As before, we apply a phase profile due to the fiat surface (i.e., a constant phase). 

This results in a displacement profile \x^'"^{x, y , z  =  0) after one round-trip inside 

the crystal. For a standing wave acoustic mode, both the phase and the amplitude 

profile of the displacement field should remain unchanged after a single round-trip 

inside the crystal (i.e. vd { x ,y , z  =  0) =  u°(x, z =  0)). Propagation over multiple 

round trips can be used to identify both the resonant frequencies and mode profiles. 

This technique is analogous to “Fox and Li” calculation used to find transverse mode 

patterns in an optical cavity [124,125]. We will discuss this in detail next.

To find the resonant mode frequencies, we take an input field u°(x, y , z  = 0)e'^L /cj
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is then computed for this particular value of Ü. Using the procedure outline above, we 

perform multiple round trips of the input field u°. We then create an interferometric 

sum of displacement fields after each round trip  at z =  0:

Usum =  y^^ = 0) (3.8)
m

The to ta l intensity in the interfered field is then given by /  =  J  dx  dî/lugumP- We

then sweep the acoustic frequency Ü and calculate intensity as a function of fl, 7(fl).

A resonant build-up of intensity occurs at frequencies corresponding to the acoustic 

modes th a t remain unchanged after each round-trip (see Fig. 3.4). Once a resonant 

frequency Qrn is found, the input field u°(x, y , z  ^  jg propagated over multiple

round-trips and the interferometric sum of displacement fields Ugum(2 : , 2/ ,z  =  0) is 

computed. This displacement profile, Ugum, is then used as an input to another 

beam-propagation over multiple round-trips. After several iterations, the interference 

profile does not change and converges to  the mode profiles of the standing wave 

acoustic modes. We choose a Gaussian profile for the input acoustic field to find 

resonant acoustic modes because the electrostrictive force produced by the beating 

of the pump and Stokes light with Gaussian profiles also has a Gaussian shape.The 

input acoustic field is also off-centered relative to the to crystalline axis to simulate 

imperfect alignment in our experiment.

We used this general approach to find the acoustic modes accounting for all three 

slowness surfaces and considering all three polarizations directions in our plano-convex 

system. For the longitudinal modes of interest we find th a t only a small amount 

(~  1%) of energy resides on the other polarizations (i.e. and Uy). Assuming all 

the energy in the polarization other than  the z-direction is lost, we find a linewidth of 

~  10 Hz from our simulations, corresponding to a Q-factor of 10®. For the acoustic 

modes of our interest we are well within the paraxial limit as the beam profiles varies
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Figure 3.4: A c o u s tic  m o d e  s im u la tio n . Simulated frequency sweep to  identify 
resonant modes and mode profiles for a plano-convex crystals of 5 mm length and 10 
mm radius of curvature, a, Simulation of z-cut Quartz with p =  2648 kgm“^ ,cn  =  
86.8 GPa, Ci2  =  7.04 GPa, cis =  11.91 GPa, C3 3  ^  105.75 GPa, C4 4  =  58.20 GPa, cu  =  
—18.04 GPa, and Cqq =  39.88 G Pa [126]. b , Simulation of z-cut a-TeOg with p = 
6040 kgm“^,cii =  55.7 G P a,c i2  ^  51.2 GPa, C1 3  =  21.8 GPa, C3 3  =  105.8 GPa, C4 4  =  
26.5 GPa, and cqq =  65.9 G Pa [127]. A dapted from Ref. [106].
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only in a small range of and ky. Therefore, we neglect the variation of polarization 

with propagation direction (i.e.d^(kx/oj, ky/uj) = d*(0,0)) [119]. To calculate longitu

dinal acoustic modes we can then use the slowness surface corresponding to just the 

longitudinal polarization (i.e. Uz(x,y,z)) .  This approximation improves the compu

tational speed and allows us to  calculates transverse mode profiles for the longitudinal 

modes show in Figure. 3.4 (a)-(b) . We compared the mode found using this approx

imation to the ones found using the general approach (without approximations) and 

find an excellent agreement.

3.3 E xperim ental Setup

We characterize the optomechanical coupling in our system through stim ulated en

ergy transfer measurements using a pump-probe apparatus as seen in Fig. 3.5. W hen 

counterpropagating pump and Stokes light passes through the bulk acoustic resonator, 

optomechanical interaction produces amplification of Stokes light at the expense of 

pump light. We measure this change in Stokes light power to determine nonlin

ear optical susceptibility, and use it to characterize optomechanical coupling rate, 

acoustic dissipation rate, free-space cooperativity as well as to perform phonon-mode 

spectroscopy.

Several aspects of our system make these measurements challenging. First, as 

explained before, the fractional change in Stokes power in mm-length scale bulk crys

ta l is typically quite small (order of at room tem peratures). As a result, the 

amplified Stokes light th a t we want to measure is accompanied by a large background 

signal. Therefore, any small power fluctuation in the Stokes signal would make detec

tion of amplified Stokes signal very challenging. Moreover, this backscattered Stokes 

light is typically much smaller than  the ~ 4  % back-refiection of the pump light when 

it passes through the air-quartz interface. Therefore, we must also spectrally separate
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Figure 3.5: Schem atics o f  th e  exp erim en ta l apparatus for sen sitive  B rillou in  
sp ectroscop y  at cryogenic tem p eratu res. Green lines represent optical fiber 
and orange lines indicated RF cables, pc: polarization controller; col: collimator; iso: 
isolator; EDFA: erbium-doped fiber amplifier; HWP: half-wave plate; PBS: polarizing 
beam  splitter; L: lens; det: detector; FBG: fiber bragg grating; bal. det.: balanced 
detector; Inten. mod: intensity modulator; phase mod: phase m odulator. Adapted 
from Ref. [106].

the Stokes light from the pump light. We devised a sensitive measurement technique 

using lock-in detection and spectral filtering of the back-scattered Stokes signal to get 

rid of unwanted pum p light and perform essentially zero background measurement. 

In w hat follows, we present the detail description of the experimental apparatus as 

outlined in Ref. [106].

The optical setup consists of fiber and free-space sections, with the fiber displayed 

in green (Fig. 3.5). The counter-propagating pum p and probe beams derived from 

the same laser are coupled to the free-space setup using fiber-optic collimators be

fore being focused into the bulk-crystalline sample. For maximum optomechanical 

coupling the polarization state  of the pum p and the probe light are m atched using 

a combination of half-wave plate to ro tate the polarization and a polarizing beam 

splitter to define a polarization axis. The polarizing beam splitter is then removed 

during measurement to avoid interfering with counter-propagating light. The sample
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is mounted on the cold finger of a continuous-flow liquid helium cryostat with a 4-K 

base tem perature and is accessed through two AR-coated fused quartz windows.

The pump and probe beams are both  derived from the same amplified narrow- 

linewidth laser source (PurePhotonics PPCL 300) centered around 1550 nm. The 

pump tone at frequency ujp is at the same frequency as the laser source and an 

erbium-doped fiber amplifier (EDFA) is used to amplify the pump power to  200 mW 

before it impinges on the crystal. To create the probe light a t frequency Wg, part 

of the light derived from the laser source is phase m odulated using an electro-optic 

m odulator (EOM). Then, a fiber-Bragg grating (FBG) is used to spectrally filter a 

single sideband out of many sidebands imprinted on the laser light due to electro-optic 

modulation. W hen we drive the EOM (EOSPACE Model PM-0S5-20-PFA-PFA) with 

rf-voltages close to the half-wave voltage (Vvr % 5 V), we can get appreciable power in 

the 4th order phase-modulated side-band. Since the phase m odulator can be driven 

with an arbitrary frequency up to  20 GHz, this technique permits us to generate 

pump-probe frequency detuning as large as 80 GHz. The probe light is amplified 

using an EDFA and approximately 40 mW impinges on the bulk crystalline sample.

The amplified Stokes signal after passing through the crystal is reflected from a 

90:10 free-space beam splitter and collected using a fiber collimator. Since this output 

collimator also collects the pump light th a t is back-reflected off the quartz-vacuum 

interface, two additional fiber Bragg grating (FBG) filters are used to remove this 

unwanted light. These two FBGs, when placed in series, ensure 50 dB suppression 

of the pump light. Whereas the Stokes light suffers a modest optical loss of approx

imately 3 dB in passing through the two FBG filters. Since the pass band of the 

FBG depends on the tem perature, all FBGs are placed within a tem perature stabi

lized housing to achieve stable and robust suppression of pump light over time. This 

amplified Stokes signal after passing through the FBGs is compared with a reference 

probe light before amplification using a balanced amplified photodetector (Thorlabs:
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PDB450C-AC). This probe reference arm is power matched to the signal arm through 

the use of a variable optical attenuator (TDK YS-500-155 magneto-optic). The out

put of the balanced detector is measured with a lock-in amplifier (Zurich Instrum ents 

HF2LI).

While we have filtered out the unwanted pump, the amplified Stokes signal stills 

sits on top of a large background signal. Therefore, to enhance the sensitivity of the 

apparatus, lock-in measurement is used. For this purpose, the pump light is modu

lated with an optical intensity m odulator (Optilabs IM-1550-3GHz). The frequency 

generator of the lock-in instrum ent (at frequency A) drives the intensity modulator. 

The m odulated pump light then im parts additional side-bands on the amplified Stokes 

light due to Brillouin scattering. So, the amplified Stokes light is also m odulated at 

A and is easily measured using lock-in detection. This measurement essentially picks 

out part of Stokes signal th a t results from optomechanical coupling. For a com

plete description of how the pump modulation frequency becomes imprinted on the 

measured amplified probe for the two limits of operation, see Section 3.4.

Neglecting the phase noise canceling circuit (see details regarding this in the next 

paragraph), the probe frequency is given by Wpr = ujp — Q,. is repeatedly swept 

through the optomechanical frequency, fig, at a period, Tgweep 1 second. Finally, 

the lock-in detector output is measured with an oscilloscope triggered with period 

Tsweep and the accumulating swept optomechanical signal is averaged for 1 minute. 

This signal corresponds to the optomechanical susceptibility of the system.

If the crystal were stationary, the relative frequency between the pum p and the 

probe would be precise. Therefore, the pump and probe tone should have a narrow 

beat tone with linewidth limited by the linewidth (typically mHz) of the RF gener

ator th a t drives the EOM. This would then perm it measurement of optomechanical 

response with unprecedented frequency resolution of milli Hz. In practice, however, 

the crystal is attached to the long arm of a cryostat and is sensitive to the vibrations
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in the environment. Therefore, as these vibrations translate to phase noise on the 

optical tones, they place a lower limit to the measurable linewidths of the optome

chanical response. Experimentally, this limit corresponds to  ^  1 kHz for our system. 

In order to  surpass this limit, we developed a phase-noise canceling technique.

Phase noise is accounted by using a feedback loop and a proportional-integral- 

derivative (PID) controller. The ability to  control the noise lies in the fact th a t the 

pump light reflecting from the vibrating crystal acquires the same phase noise as the 

optomechanical response. Therefore, we use the back-reflecting pump light in order 

to  provide an error signal to our PID circuit. The complete circuit is depicted in Fig. 

3.5.

The new probe frequency, Upr consists of a dithering frequency component, (̂ corrected, 

which stabilizes the beat frequency between the pump and the Stokes field inside the 

crystal. Specifically, a rf single-sideband mixer mixes ujd with the output of a voltage 

controlled oscillator (VCO) th a t is controlled by the PID output. The error frequency 

for the PID is given by the beat frequency of the backreflected pump and the probe, 

after mixing with uJd- This error frequency is compared with a stable reference fre

quency, cjref, to  generate the phase difference as the error signal for the VCO drive. 

W hen the PID loop is activated the new probe has an identical frequency response to 

th a t of the backreflected pump. From our detection limited beat frequency between 

the backreflected pump and the probe, we expect the measurement scheme to have a 

linewidth resolution of less than  1 Hz.

3.4 Stim ulated  B rillou in  Spectroscopy using M od

u lated  P u m p

Through the measurement of the amplified Stokes signal, we can determine both  the 

optomechanical coupling strength, and characterize the mechanical properties of
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Figure 3.6: B rillo u in  sp ec tro sc o p y  a t  ro o m  te m p e ra tu re .  For the  measurement 
of Brillouin gain in the conventional Brillouin limit, we just m odulate the input pump 
field. The interference of pump and Stokes fields results in a modulated phonon held. 
This m odulation is im parted on the  back-scattered Stokes light, perm itting us to 
perform sensitive lock-in detection. Adapted from Ref. [106].

our bulk crystalline resonator. However, as explained before, the fractional change in 

Stokes light due to Brillouin interaction w ithin most crystals is rather small. There

fore, to perform zero background measurement of the small signal gain (fractional 

change as low as 10“®), we modulate the pum p light and use lock-in detection of 

the m odulated Stokes gain signal. The dynamics of the Stokes light when we modu

late the pum p is quite different in the conventional Brillouin limit (room tem perature 

measurements) and the coherent-phonon limit, which we describe in the next sections.

3 .4 .1  D y n a m ics in  th e  C on ven tion al B rillou in  L im it

In this section, we explore the  dynamics of stim ulated Brillouin scattering measure

ments in the conventional Brillouin limit when the pump light is intensity modulated. 

In the frequency domain, intensity m odulation of the pump light typically gives us 

two additional side-bands on the carrier. Note th a t our intensity m odulator operates
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near the quadrature point, where the power output as a function of driving voltage 

in linear, giving us weaker sidebands on a large carrier. Therefore, the dynamics of 

Brillouin scattering in this case can be derived by considering the interaction of three 

pump waves with a single frequency Stokes wave.

In typical stim ulated Brillouin measurements, as explained in section 2.1, a single 

frequency pump wave (up) interferes w ith a single frequency Stokes wave (wg) to 

produce a beat tone at the difference frequency {Ü = cjp — cjs). The resulting optical 

forcing function at D then resonantly drives an acoustic waves when D matches the 

Brillouin frequency % .  However, when the m odulated pump light, consisting of 

waves at frequencies Wp, Wp — A, and Wp + A, interferes with a single frequency Stokes 

wave at Wg, generating a modulation in the optical forcing function with frequency 

components at H, H -  A, H +  A. Here, A is the modulation frequency of the intensity 

modulator, which we assume is much smaller than  the Brillouin frequency. All three 

frequency components of this forcing function resonantly drive a modulated acoustic 

wave near the Brillouin frequency and scatters pump light not just into the frequency 

component at Wg but also into additional new sidebands a t (jg ±  A as seen in Fig. 3.6. 

From the coupled mode equations derived from the Hamiltonian treatm ent presented 

in Section 2, we obtain the following optical power for the Stokes sidebands a t the 

end of the crystal

Ps-^ =  G \L ^  ( (3.9)

Here, F is the acoustic damping rate, Ppo, Pp_i, Pp+i is the input power of the pump 

waves at carrier and sidebands, respectively, and Pgo is the input Stokes power. In 

deriving the above formula we assumed th a t Pp_i =  Pp+i- From Eq. (3.9) we see th a t 

Pg_i is largest when A ^  0. To maximize signal-to-noise ratio at room-tem perature, 

we modulate pump with frequency A <C F g (see Fig. 3.7). In this limit, the sideband
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Figure 3.7: B rillou in  gain  as a fu nction  o f  m od u lation  frequency (A ). Peak 
gain for energy transfer measurements in TeOg at room -tem perature measured using 
the heterodyne lock-in detection as a function of A /F . F ~  11 MHz obtained by 
fitting Eq. (3.9) agrees well with the independently measured acoustic dissipation 
ra te  of 10 MHz in TeOa- Adapted from Ref. [106].

Stokes power is given by

P g _ i G ^ L ^ P p o P p - iP s o - (3.10)

In experiments, we intensity modulate the pum p wave at frequencies of around 400 

kHz, which is typically much smaller than  the acoustic linewidth of ~  10 MHz, ob

served for most crystals a t room tem perature.

The generation of new sidebands on the  Stokes light allows us to  perform in theory 

a zero-background measurement of scattered Stokes signal using lock-in detection. 

The power measured by an optical detector is proportional to  the square of the 

optical fields (i.e. P  oc (E*E)).  Therefore, when a Stokes held with two sidebands
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(see Fig. 3.6) separated by A is measured using a power detector, yielding

(detector) — Pgo +  Ps-i  +  Ps+i +  F^oF^-iCos(At)

+  2yP,oP,+iCos(A«) + 2v'P,+aP»-iCos(At). (3.11)

In our experiments, Pg_i =  Pg+i Pso- Furthermore, in the weak gain limit AF^o(O) <C 

Pso{L) is also an excellent approximation. By demodulating the detected power at 

frequency A, we obtain the following expression for the power detected at the lock-in

Pg (heterodyne) =  4\/F^oP^-i- (3.12)

Now substituting Eq. (3.9) in Eq. (3.12) we obtain the following expression for the 

power detected in the lock-in measurement

Pg (heterodyne) = AGBLPsoy^PpoPp-i- (3.13)

Therefore, the heterodyne measurement of the zero-background sideband Stokes tone 

using the lock-in detection gives a direct measure of the coupling strength. Note 

tha t in experiments, however, the backreflected pump gives a large noise background 

because the lock-in detection occurs at the same frequency as the pump modula

tion. Therefore, we use a FBG filter to suppress the pum p light hitting the detector 

by ~  50 dB before the lock-in measurement. It may be possible to create a truly 

zero background measurement without the use of a filter by using an optical local 

oscillator derived from the same Stokes light. One can take part of the Stokes light 

shifting it to a new frequency (Jlo =  Wg 4- WAOM using an AOM, and performing the 

heterodyne measurement between the modulated Stokes signal and the optical local 

oscillator. The lock-in detected frequency components a t u>aom =t A would perm it 

zero background measurement of the Stokes sidebands w ithout filtering the pump.
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3 .4 .2  D y n a m ics in  th e  C oh eren t-p h on on  L im it

In this section, we discuss the dynamics of stim ulated Brillouin scattering in the 

coherent-phonon limit when the pum p light is intensity modulated. For conceptual 

and experimental simplicity, we consider the case when the m odulation frequency, A 

is much larger than  the phase matching bandw idth as seen in Fig. 3.8. We do this 

because m odulation within the phase matching bandwidth results in a more compli

cated spectrum  of Stokes scattering th a t will have overlapping contribution from the 

three pum p tones. In this case, the m odulated pump beam interfering with the stokes 

field drives a m odulated optical forcing function. Since the m odulation frequency is 

much larger than  the phase matching banding the optical forcing function drives a 

single acoustic wave at frequency Ü = tOp — LOg. Each pum p sideband scatters off this 

coherent phonon to then produce stokes sideband at cOg ±  A. W ith an additional 

assumption th a t the intensity beat length of the pum p is much longer than  the crys
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tal length (i^opt/A >  L ^ )  we arrive a t the following expression for the maximum 

scattered sideband Stokes power on resonance

„ m | 4  7 -4

“  i t k i ' ' ” ’'’ - ' ’’" -  I ' " »

where Vo is the optical velocity in the bulk medium (see supplementary section 4.2 of 

Ref. [106] for details). Finally, using Eq. (3.12) we get the following zero-background 

heterodyne power for the sideband Stokes signal in the coherent-phonon limit

Pg (heterodyne) =  (3.15)

3.5 S tim ulated  B rillouin  S cattering  M easurem ents  

at R oom  T em peratures

We now present the phonon-mediated energy transfer measurements performed at 

room tem perature in a variety of crystal species using the experimental apparatus 

seen in Fig. 3.5. These energy transfer measurements provide us information about 

the Brillouin frequencies, acoustic lifetimes, and the nonlinear optical susceptibility 

of the system.

In Fig. 3.9a-e, we see Stokes energy transfer measurements on z-cut Te02, z- 

cut quartz, x-cu.t C aF 2 , z-cut GaAs, and z-cut Silicon. These crystals were all 5 

mm long. These measurements reveal broad Lorentzian lineshapes with Brillouin fre

quencies th a t agree well with the predicted resonance frequencies from Eqn. (2.3). 

The linewidths for most crystals is of the order of 10 MHz at room tem perature, 

corresponding to spatial decay lengths of the order of 100 |zm. The fractional change 

in Stokes power is considerably smaller for Silicon (~  1 ppm) due to i t ’s weak pho

toelastic response. W hereas, in quartz and C aF 2 , smaller refractive index results in
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a weaker Brillouin response. Finally, we note th a t the precise values of Brillouin fre

quencies obtained from these stim ulated scattering measurements are crucial pieces 

of information as we consider utilizing bulk acoustic phonons to make novel Bril

louin lasers and high-frequency cavity optomechanical system, which we will discuss 

in greater detail in Chapter 5.

We performed careful comparison between theoretically predicted Brillouin gain 

and experimentally observed values for stim ulated energy transfer measurements in 

quartz and Te02. To theoretically estim ate Brillouin gain (see Eq. (2.22)) for each 

measurement, we first need to determine the effective acousto-optic area, which we 

can determine by measuring the mode profiles of the Gaussian optical fields inside 

each crystal as seen in Fig. 3.10 (see supplem entary information of Ref. [106] for 

details). Since acoustic waves a t room tem perature decay rapidly (i.e., we do not 

have formation of discrete standing wave acoustic modes with transverse mode profiles 

determined by the crystalline geometry), we assume th a t the acoustic mode profile 

is just given by the profile of the optical forcing function, which is proportional to 

the product of the transverse mode profiles of the counterpropagating optical fields. 

Using measured effective acousto-optic area of tt x (71.1 qm)^ (tt x  (65.2 qm)^) we 

predict a Brillouin gain of 0.1 (W m )“  ̂ (9.7 x 10“  ̂ (Wm)~^) in Te02 (quartz). The 

experimentally measured Brillouin gain of 0.1 (W m )“  ̂ (1.2 x 10“  ̂ (W m)“ )̂ in Te02 

(quartz) agrees well with the theoretically predicted values calculated above. Note 

th a t such small Brillouin gain corresponds to peak fractional change in probe power 

of 80 ppm (13 ppm) for Te02 (quartz).

This weak scattering rate for photons is dram atically enhanced as acoustic dissi

pation rates plummet at low tem peratures. Next we look at how the nonlinear optical 

susceptibility for photon-phonon coupling is modified at cryogenic tem peratures.
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beam waist of the Gaussian optical beam along with the ABCD law [118] for Gaussian 
beam  propagation is used to  determine the optical mode profiles inside the quartz 
and Te02 plano-convex resonator. Adapted from Ref. [106].
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3.6 S tim ulated  B rillouin  Scattering  M easurem ents  

at C ryogenic T em peratures

At cryogenic tem peratures of ~  10 K, our system enters the coherent-phonon limit, 

leading to the formation to discrete standing-wave phonon modes. As a result, the 

energy transfer spectrum  in this regime shows multiple Lorentzian peaks within a 

finite bandwidth around the Brillouin frequency.

Fig. 3.11 shows measured stim ulated energy transfer spectrum  for z-cut quartz 

crystal a t ~  10 K tem peratures. In a wide spectral scan, we see a series of nar

row resonances with peak resonance height m odulated by a sinc^ envelope around 

the Brillouin frequency. We show the calculated phase-matching bandwidth (dashed 

line), dem onstrating th a t the observed modulation profile agrees well with the pre

dicted geometric bandwidth. We can also perform such stim ualted energy transfer 

measurements for a vareity of crystals a t cryogenic tem peratures as seen in Fig. 3.13. 

For some crystals, we observe the modulation profile deviates from the usual sinc^ 

response. This occurs when the pump and Stokes beam are not exactly colinear due 

to misalignment. The non-trivial acousto-optic overlap resulting from this misalign

ment then gives rise to  a more complicated modulation profile [105]. Note th a t due to 

changes in elastic and optical properties of these crystals at cryogenic tem peratures, 

the Brillouin frequency of these crystals shifts a t cryogenic tem peratures.

These stim ulated scattering measurements allow us to perform a type of phonon 

mode spectroscopy. For example, the regularly spaced resonances in quartz (Fig. 

3.11 (b)) reveals three acoustic mode families (color-coded). The observed spacing 

of 630 kHz between each mode families is consistent with the acoustic free spectral 

range (Va/{2L)) for the standing waves acoustic modes within quartz. Elastic-mode 

simulations as seen in Fig. 3.11 (c) show th a t this mode structure is consistent 

with coupling to the fundamental (LO) and higher order transverse (LI, L2) modes
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Figure 3.11: C om parison o f  exp erim en ta l d ata  to  acou stic  m od e sim ulations.
(a) Stimulated Stokes scattering measurement of a plano-convex bulk acoustic res
onator in z-cut quartz crystal a t cryogenic tem perature. The optical beams are 
misaligned from the acoustic cavity to enhance the response from the higher-order 
transverse acoustic modes. The wider frequency span in the inset reveals a sinc^ spec
tra l response and the dashed lines indicate the geometrically imposed phase-matching 
bandwidth, (b) Simulated acoustic mode spectrum  of the plano-convex acoustic res
onator accounting for the anisotropy in the elastic constants. Three separate spatial 
mode families identified by different colors w ith red corresponding to  the fundamental 
mode (LO), green to the near-degenerate 1st higher-order modes (LI), and blue to 
the near-degenerate 2nd higher-order modes (L2). We seed the simulation with an 
input acoustic beam th a t is shifted 10 pm horizontally and 15 pm  vertically from 
the axis of the resonator to couple to higher-order spatial modes for comparison with 
experiment, (c) Normalized acoustic mode intensity profile of the higher-order spatial 
modes (LO, LI, and L2) at the planar surface of the acoustic resonator. A dapted from 
Ref. [106].

59



3
à  80
o.
<

40

0

1 7.6 K

1 1

1
1

1 1 1 m
L 1 . J ^ L 1 1 1

------------- - L.J-----,-------------

z-cut Quartz

300 Hz

12.664 12.665 12.666 12.667
Frequency (GHz)

-1 0 1 
Frequency (kHz)

Figure 3.12: A c o u s tic  Q -fac to r a t  c ry o g en ic  te m p e r a tu r e  (7 .6  K ). High res
olution measurement of a 12.67 GHz fundam ental Gaussian acoustic mode in z-cut 
plano-convex quartz reveals a narrow linewidth of 300 Hz. This corresponds to an 
acoustic Q-factor of 42 million. Adapted from Ref. [106].

supported by the plano-convex acoustic resonator. The spectrum  of the resonator 

modes obtained from the elastic-wave simulation matches well with the observed 

mode structure in all the crystals th a t we have measured experimentally.

The energy transfer spectrum  also provides information about the acoustic dam p

ing rate. So, the high resolution spectra of the fundamental LO cavity mode for quartz 

as seen in Fig. 3.12, reveals a linewidth, Tm/27i, of 300 Hz. This corresponds to acous

tic Q-factor of 42 million or energy decay time of 0.53 ms for 12.7 GHz acoustic mode. 

These long lived phonons, with an unprecedented /  • Q product of 0.5 x 10̂ ®, have 

coherence lengths Lac of ~  3 m th a t is considerably larger than  the crystal length 

of 5 mm. /  • Q-product is an im portant figure of m erit for our optomechanical sys

tem  because the  number of coherent oscillations an oscillator can have in presence of 

therm al decoherence is proportional to /  • Q (i.e. Q /(F ^n th) oc /  • Q) [117].

Acoustic Q-factors for the various crystals th a t we measured are tabulated  in 

Table 1. A variety of extrinsic and intrinsic acoustic damping mechanisms could limit 

acoustic lifetimes. To achieve u ltra  long-lived phonons, extrinsic loss mechanisms 

such as diffraction losses and anchoring losses must be eliminated. In our system,
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the plano-convex geometry produces tightly confined acoustic phonons (beam waists 

of < 60pm) th a t have negligible diffraction and anchoring losses, as the transverse 

mode size is more than  a hundred times smaller than the crystal radius (6.35 mm).

A variety of acoustic loss mechanisms scatter energy from the longitudinal mode 

of interest as the acoustic waves reflects of the crystal surface. For example, there is a 

non-negligible amount of polarization mode conversion. Accounting for this polariza

tion mode conversion but ignoring m aterial dissipation and device imperfections, the 

acoustic mode simulations suggest th a t the Q-factor due to  the fundamental mode 

should exceed 10  ̂ in z-cut quartz. Acoustic waves also encounter scattering losses 

a t the crystal surfaces. From the measured root mean square surface roughness of 

approximately 1 nm, we expect Q-factor limit of 200 million due to surface scatter

ing [100]. This is still a factor of 5 larger than  the measured Q-factor, suggesting 

th a t the measured Q-factor of 42 million is likely dominated by other intrinsic loss 

mechanisms due to  im purities/defects or dislocations in the crystal. Upon further 

studies of various quartz wafers, we found out th a t the crystal quality and in partic

ular the aluminum impurity, which we measured using a Fourier Transform Infrared 

Spectroscopy, was a strong predictor of the phonon linewidth a t low tem peratures. 

Hence, through further improvements in the crystal quality to minimize crystal im

purities and device imperfections, it may be possible to  increase the Q-factor for 12.7 

GHz phonons in quartz by another order of magnitude.

The dram atically increased Q-factor a t cryogenic tem peratures also greatly en

hances the nonlinear optical susceptibility. Since the peak susceptibility scales in

versely with the acoustic dissipation rate (see Eqn. 2.22), the stim ulated scattering 

rates are enhanced by 10^ (10^) in quartz (Te0 2 ) over their room tem perature val

ues. From the measured optical susceptibility we determine zero point coupling rates 

(^Q^/27r) of 31 and 82 Hz for quartz and Te02 respectively. These values agree well 

with the theoretically predicted values of 36 Hz and 71 Hz for the coupling rates in
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Figure 3.13: B rillo u in  sp e c tro sc o p y  a t  c ry o g en ic  te m p e ra tu re s . Stim ulated 
Stokes scattering measurements in plano-convex (a) z-cut quartz resonator having 
a length L =  5 mm and radius of curvature, R  = 10 mm at 7.6 K (b) z-cut Te02 
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quartz and Te0 2  using known m aterial parameters and device geometry.

The Hamiltonian framework th a t we developed in C hapter 2 can now be used 

to interpret optomechanical cooperativity for photon-phonon coupling in our system. 

For example, within quartz crystal, an acoustic dissipation rate of 27r x 300 Hz and 

an incident pum p power of ^  250 mW  corresponds to the free space cooperativity

= Pj^\g^\^L\^/[TmfiüJpVgpVgs) ~  0.03. While it is possible to achieve unity coop

erativity values required for phonon mode-cooling or regenerative self-oscillations by 

simply increasing the incident pump power, we see in C hapter 5 th a t it is possible to 

dram atically enhance the cooperativity of our system by resonantly enhancing both 

the pump and the Stokes light by placing the bulk crystal inside the optical cavity.

3.7 C onclusions and O utlook

In this chapter, we have shown how électrostriction mediated traveling-wave optome

chanical interaction, also called stim ulated Brillouin scattering, can be used to access 

bulk acoustic waves at high frequencies within practically any transparent crystalline 

media. We observed th a t various features of such measurements were transformed 

at cryogenic tem peratures. Through such measurements, we dem onstrated how the 

lifetimes of the bulk acoustic waves within crystalline solids at cryogenic tem peratures 

are enhanced by orders of magnitude when compared to room tem perature values. 

This leads to formation of macroscopic (cm-scale) standing waves acoustic modes. We 

shaped the surfaces of the crystal to form long-lived phonon modes th a t are tightly 

confined, perm itting efficient coupling to free space laser beams. By adapting the op

tical design principles to the case of elastic wave propagation in anisotropic crystals, 

we dem onstrated stable plano-convex resonators. For example, high frequency (12.7 

CHz) phonons within plano-convex quartz crystal have high Q-factors (42 million) 

and also yield appreciable single-photon optomechanical coupling rate  (31 Hz).
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The bulk crystalline optomechanical system offers a powerful ways for prob

ing cryogenic phonon physics in transparent crystalline media. Despite trem en

dous progress in the field of optomechanics, eletro-mechanics and quantum-phononic 

systems, it remains unclear which m aterial platform could provide access to long- 

lived phonons a t high-frequencies. While electromechanical transduction has been 

used to extensively study cryogenic phonon physics in piezoelectric crystals such as 

quartz [101], such techniques cannot be easily adapted to study other promising non

piezoelectric crystals such as CaFg, Diamond, and Silicon. Since, photoelastic cou

pling is present in all media, Brillouin spectroscopy provides a non-invasive approach 

to explore phonon dissipation in a wide variety of transparent crystals.

Optomechanical coupling to bulk acoustic phonons using free-space laser beams 

represents an im portant first step towards utilizing bulk acoustic phonon for cavity 

optomechanics. Once we precisely know the Brillouin frequency through stim ulated 

energy transfer measurements, we can design a multimode cavity optomechanical 

system by placing the bulk acoustic resonator inside an optical cavity. This high 

frequency cavity optomechanical system, with dram atically enhanced coupling rates, 

can be used to  realize a new class of ‘phonon lasers’ [128] and compact Brillouin 

lasers [57]. We will discuss such high-frequency cavity optomechanical systems for 

classical as well as quantum  applications in greater detail in Section 5 and Section 6.

64



Chapter 4

Bulk A coustic Resonators on Chip

4.1 Introduction

In the previous chapter, we saw how a variety of crystalline materials at cryogenic 

tem peratures can support long-lived acoustic waves at high-frequencies. Phonons 

within such crystalline bulk acoustic resonators (BAW) can become coherent carriers 

of information and can be utilized for a variety of classical and quantum  applications 

ranging from novel ‘phonon lasers’ to devices for quantum  information storage and 

transduction. However, for many such applications we seek high performance acoustic 

resonators th a t offer a path  towards chip-scale integration.

Historically, confocal bulk acoustic resonators, which support long-lived phonons 

with f - Q  products as high as 1.8 x 10^  ̂ [100], were designed for operation at relatively 

low frequencies (5-100 MHz) [99]. As a consequence, these resonators have been rel

atively large; confinement of such low-frequency acoustic waves requires a resonator 

with cm-scale later dimensions. Fortunately, as we scale these resonators to operate at 

higher frequencies (tens of GHz), smaller acoustic wavelengths perm it dram atic size 

reduction. Such high frequency phonons are less sensitive to therm al decoherence 

mechanisms, making them  a valuable resource for quantum  applications. Despite
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this opportunity for size reduction, our initial efforts to engineer Brillouin coupling to 

bulk acoustic phonons relied on confocal macroscopic resonators. The reason for the 

relatively large size of these first systems was one of convenience; using commercially 

available optical polishing services, we could shape a variety of crystals into confocal 

resonators having larger (cm-scale) sizes. However, we realized th a t reaching record 

high lifetimes for acoustic waves required us to pay attention to crystal quality as 

well as possible defects and damage induced by mechanical polishing at the surface. 

This motivated us to develop our own fabrication techniques to shape confocal res

onators. Micro-fabrication would not only allow us to precisely control the surfaces, 

utilize a large class of high-purity wafers as substrates to fabricate arrays of phononic 

resonators, perm itting us to perform systematic studies of cryogenic phonon physics. 

Moreover, this approach would enable us to create chip-scale resonators th a t can be 

integrated with emerging quantum  phononic systems [109,110,129,130].

In this chapter, we present novel design principles used to fabricate miniaturized 

BAW on-chip. These devices have volumes th a t are more than  1000 times smaller 

than  th a t of the cm-scale BAW resonators presented in the earlier chapter. To achieve 

such size reduction, we developed simple microfabrication techniques th a t allows us 

to create high-performance BAW resonators of a wide array of crystalline substrates. 

By performing laser-based phonon spectroscopy of high-frequency Brillouin-active 

phonon modes with such on-chip resonators, we dem onstrate performance compara

ble to the best cm-scale BAW resonators. Finally, we show how such non-invasive 

laser spectroscopy of an array of on-chip BAW resonators could be used to explore 

fundamental limits of phonon dissipation at cryogenic tem peratures.
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4.2 O n-chip R esonator D esign

Creating high-performance bulk acoustic wave resonators within a small package 

presents a unique set of challenges. First and foremost, we seek to eliminate ex

trinsic losses to achieve long phonon lifetimes. The longitudinal waves which reflect 

from the top and bottom  surfaces of the crystalline wafer can suffer from diffraction 

losses. To m itigate such extrinsic loss channels for phonons, we shape one of the 

surfaces of the crystal to create a plano-convex resonator, which produces tight con

finement of acoustic energy in the transverse direction (beam waist or radius of < 

40 |xm). As discussed in section 3.2, we must first determine the range of radii of 

curvatures, R, of the convex surface th a t would result in a stable cavity for phonons. 

Assuming one surface in planar, the stability condition is simply given by R  > t / %, 

where t is the thickness of the substrate and % is the anisotropy parameter.

In addition to forming stable acoustic modes, we must engineer the acoustic mode 

to couple efficiently to light. Since Brillouin coupling depends on the overlap integral 

between the optical and acoustic modes [131], we seek to maximize the optomechan

ical coupling to the fundamental Gaussian acoustic mode by matching the acoustic 

mode waist to the Gaussian optical beam having spot sizes of ~  35 |xm. Note th a t 

one can also also change the optical beam size to m atch the acoustic beam waist. We 

chose to change the acoustic mode waist through fabrication because this is relatively 

easier than  changing free-space components to vary the optical beam size. The fol

lowing expression relates R  to the acoustic mode waist, a t the planar surface (see 

Appendix D for details)

2 / 9i92C^ -  9 1 9 2 )

Here, Aph is the wavelength of the acoustic mode, and the stability param eters gi — I 

for the planar surface and Q2 = 1 -  t / { x ^ )  for the convex surface. For instance, if we
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were to fabricate a plano-convex BAW resonator in a 1 mm thick 2 -cut quartz wafer, 

it would support a 12.66 GHz acoustic mode (Aph =  497 nm) having an acoustic waist 

ujo — 39.6 |um. Typically, the resonators th a t we fabricate on variety of crystalline 

substrates (silicon, quartz, sapphire, GaAs) have radii of curvatures on the order of 

10s of mm.

Finally, we design the phonon cavity such th a t anchoring losses are negligible. 

We minimize anchoring losses by setting the diameter, d, of the convex surface to 

be much larger than  the acoustic mode waist, Wo, ensuring th a t the only vanishingly 

small component of the acoustic mode feels the edges of the convex resonator. Since 

almost all of the acoustic energy resides within the plano-convex mode volume, this 

leads to negligible anchoring losses. For example, if we were to fabricate a resonator 

in quartz such th a t d/wo =  5 and assume th a t all the energy outside the convex 

surface is lost to anchoring losses, we still find th a t the Q-factor limit due to this loss 

mechanism would be 7 x 10^ [108]. Therefore, BAW resonators fabricated on 1 mm 

thick quartz having acoustic waist of 39.6 qm th a t we considered earlier, it is possible 

to almost completely eliminate anchoring losses in resonators with diameters as small 

as 200 pm. We usually fabricate resonators with diameters of the order of 1 mm. We 

will see in the next section th a t our fabrication approach provides an elegant way of 

changing the radius of curvature, R,  by simply changing the diameter d of the lens. A 

typical resonator with a diameter of the order of 1 mm fabricated on a 0.3-1 mm thick 

wafers, representing more than  1000-fold reduction in device volume when compared 

to the 5 mm thick confocal resonators with half-inch diameters.

4.3 Fabrication

We developed simple microfabrication techniques to create plano-convex resonators 

on-chip by adapting existing techniques used to fabricate optical micro-lenses [132-
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Figure 4.2: M ic ro fa b r ic a tio n  s tep s , (a) Standard optical lithography is used to de
fine a circular photoresist pattern  having finite thickness (i.e. a photoresist cylinder),
(b) W hen the photoresist is placed in a chamber containing its constituent solvent, 
it absorbs the solvent, becomes less viscous, and reflows into a hemispherical shape. 
The resist hardens and retains its hemispherical shape after a post-bake following 
the reflow process, (c) This hemispherical surface is used as a mask during a slow 
reactive ion etching process, (d) After completely etching away the photoresist, the 
hemispherical surface profile is transferred onto the substrate, yielding a plano-convex 
acoustic resonator. Adapted from Ref. [108].

137]. We optimized the fabrication steps for each crystalline substrate so it yielded 

resonators with excellent surface roughness necessary to achieve long phonon lifetimes.

In this fabrication process, standard optical lithography is first used to define cir

cular photoresist patterns. These photoresist cylinders are subsequently reflowed into 

photoresist hemispheres using the solvent vapor reflow technique [138-140]. W hen the 

circular photoresist cylinders are exposed to solvent vapor, the  photoresist becomes 

less viscous, allowing surface tension to tu rn  them  into hemispherical surfaces having 

excellent surface roughness (order of 1 nm). Unlike more widely used therm al reflow 

techniques used to  fabricate optical micro-lenses, solvent vapor reflow perm its us to 

create hemispheres with very small contact angle and achieve large radii of curvatures 

(tens of mm) needed to form stable acoustic cavities. Another im portant advantage 

of using solvent reflow technique is th a t this technique is essentially substrate in

dependent. For example, the center height of the reflowed photoresist hemisphere 

only depends on the initial thickness of the photoresist and is not dependent on the 

substrate materials (i.e. same contact angle for a fixed diameter photoresist for ev

ery substrate). In contrast, contact angle varies dramatically with substrates during 

therm al reflow ,and the reflow process needs to  be optimized for each substrate. In
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the solvent vapor reflow, the center height of the photoresist is also relatively insen

sitive to the photoresist diameter, meaning we can independently change the radius 

of curvature of the convex surface by simply changing the diam eter of the photoresist 

cylinders.

Reactive ion etching is then used to transfer the hemispherical surface profile onto 

the substrate by completely etching away the photoresist m aterial using a reactive 

ion etch. The reactive ion etching param eters must be developed for each substrate 

m aterial and optimized to ensure excellent surface finish after etching. The ratio 

of etching rate of the photoresist to  the etching rate of the substrate, also called 

etch selectivity, can be varied, providing another independent way to control the 

final radius of curvature of the convex surface. Typically, we perform slow reactive 

ion etching (etch rates of 10-100 nm /m in), meaning th a t etching of ~10 \im thick 

photoresist hemispheres takes 1-3 hours. Therefore, one must try  to minimize any 

contam inants th a t could form inside the etching chamber during such a long etch 

process by performing an extensive conditioning run. The detailed fabrication steps 

for producing acoustic resonators on a variety of crystalline substrates are presented 

in Appendix F.

4.4 P hon on  m ode spectroscopy o f on-chip resonators

We probe the lifetimes of high-frequency acoustic waves in microfabricated plano

convex bulk acoustic resonators a t cryogenic tem peratures using laser-based optome

chanical spectroscopy. As explained before, électrostriction and photo-elasticity me

diated optomechanical coupling perm its us to both generate and detect phonons over 

a finite bandwidth near Brillouin frequency, ilg  (see Section 2-3). Since the coupling 

bandwidth due to the phase matching constraints is approximately twice the acoustic 

free spectral range (FSR) of Va/2t (typically 1-50 MHz), this laser spectroscopy per-
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mits us to determine the longitudinal mode spectrum  of plano-convex phononic cavity. 

This measurement is performed by illuminating the resonator with both  pump and 

probe laser beams. As the frequency detuning between the pump and probe waves are 

varied, stim ulated energy transfer mediated by these Brillouin-active phonon modes 

perm its us to perform high-frequency phonon mode spectroscopy. This technique is 

very versatile; we can readily probe the performance of an array of such chip-scale 

resonators fabricated on the same chip by laterally translating the laser beam across 

the chip.

In the experimentally measured energy transfer spectrum  seen in Fig. 4.3b-d, we 

observe multiple resonances corresponding to the standing wave longitudinal phonon 

modes centered about the Brillouin frequency of 12.66 GHz, 20.51 GHz, and 37.78 

GHz for BAW resonators microfabricated in 2 -cut Quartz, a:-cut GaAs and a:-cut 

Silicon wafers, respectively. Specifically, we identify family of narrow resonances 

th a t are separated by the acoustic FSR of 3.13 MHz, 4.61 MHz, and 8.27 Mhz, as 

expected for 1-mm-thick 2 -cut quartz, 0.5-mm-thick a:-cut GaAs, and 0.5-mm-thick 

a:-cut silicon wafer, respectively.

A high-resolution measurement of modes within a single mode family as seen in 

Fig. 4.3 reveals multiple equally spaced resonances separated by 154 kHz, 398 kHz, 

and 761 kHz in quartz, GaAs, and silicon. These resonances (LI, L2, L3, and so 

on) are Hermite-Gaussian-like higher order transverse acoustic modes of the plano

convex geometry. We observe coupling to such higher order acoustic modes when the 

Gaussian laser beams are not perfectly mode matched to the fundamental Gaussian 

mode of these acoustic resonators or when the laser beams are slightly misaligned.

The frequency spacing for these higher order modes shows good agreement with 

both the analytically and numerically calculated mode spacing. Assuming paraxial 

wave propagation and parabolic acoustic dispersion surfaces, the analytical calcula

tion gives mode spacing of 155 kHz, 410 kHz, and 731 kHz, which agrees well with
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Figure 4.3: L a se r-b a se d  sp e c tro sc o p y  o f  th e  a c o u s tic  m o d es  (a) Pump-probe 
spectroscopy and energy transfer measurements at cryogenic tem peratures (discussed 
in C hapter 3.6) is used to  probe the frequency spectrum  and dissipation rates of the 
standing wave longitudinal acosutic modes within a chip-scale bulk acoustic resonator, 
(a) Longitudinal phonon-mode spectrum  of a plano-convex resonator fabricated on a 
1 mm thick z-cut quartz wafer shows a fundam ental mode (LO) and series of equally 
spaced higher-order transverse modes (LI, L2, L3, and so on) separated by 154 kHz. A 
zoomed out spectrum  shows families of such modes separated by longitudinal acoustic 
free spectral range of 3.13 MHz. (c-d) Mode spectrum  of plano-convex resonators 
fabricated on x-cut GaAs and x-cut Silicon wafer, respectively. Adapted from Ref. 
[108].
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resolution spectroscopy of fundam ental Guassian acoustic modes (LO) w ithin chip- 
space resonators (a-d) This measurement reveals Q-factors of 2.8 x 10^, 0.98 x 10®, 
and 6.5 x 10® in quartz, GaAs, and Silicon, respectively. A dapted from Ref. [108].

the experiments (see Appendix D).

The numerical simulations also provides insights into the observed frequency split

ting (~  tens of kHz) of the higher order transverse modes in quartz and silicon. We 

observe similar resonance splittings in simulation when the  shape of the microfabri

cated surface has some asymm etry about its axis. This small asymm etry was con

firmed independently by measuring surface profiles of these microfabricated cavities. 

Typically, we find th a t resonators th a t are larger than  1 mm in diam eter s tart to 

exhibit this type of axial asymmetry during the  reflow process.
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The linewidth of the resonances observed during the energy transfer measurements 

is determined by the acoustic dissipation rate  F^/27r, perm itting us to calculate Q- 

factors of such Brillouin active phonon modes. To explore the performance of such 

microfabricated bulk acoustic resonators, we compare the Q-factor for the fundamen

ta l Gaussian acoustic mode (LO), which typically exhibits the lowest diffraction and 

anchoring losses. We perform these measurements over a range of optical powers to 

identify the intrinsic acoustic linewidth. Since the steady state  phonon numbers can 

be quite large (10^° — 10^^) during such stim ulated energy transfer measurements, 

we reduce the optical powers to avoid possible line-shape distortions th a t may arise 

from acoustic nonlinearities. Moreover, other nonlinear optical effects like free carrier- 

induced absorption and refractive index change th a t can leads to Fano line-shapes in 

silicon (see Fig. 4.3d), can also be minimized at low optical powers. Measurement 

of the linewidth a t low optical powers (order of 10 mW for pump and 1 mW  for 

Stokes light) as seen in Fig. 4.4 revealed a linewidth of 450 Hz, 21 kHz, and 5.8 

kHz corresponding to a Q-factor of 2.8 x 107, 0.98 x 10®, 6.5 x 10® for 12.66 GHz, 

20.51 GHz, and 37.78 GHz acoustic mode in on-chip resonators in quartz, GaAs, and 

silicon. Note th a t we obtain large /  • Q-products of 3.6 x 10^  ̂ and 2.5 x 10^  ̂ for 

resonators in quartz and silicon th a t are comparable to the /  • Q-products obtained 

in cm-scale bulk crystalline resonators.

4.5 C onclusions and O utlook

In conclusion, the analytical guidelines, numerical techniques, and microfabrication 

techniques presented in this chapter could be used to perform studies of acoustic 

dissipation in a broad class of crystalline solids. Moreover, these techniques can be 

used to miniaturize high performance BAW resonators for applications ranging from 

oscillators to on-chip Brillouin lasers.
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As for quantum  applications, we have been able to couple on-chip plano-convex 

resonators of the type discussed here to superconducting qubits. Coherent control of 

long-lived phonon modes supported by on-chip BAW resonators using superconduct

ing qubits have already yielded creation of non-classical mechanical states such as the 

number states.

Beyond optomechanics and quantum  information, the microfabrication techniques 

presented here can also be utilized to produce high-hnesse optical cavities on-chip. 

Through microfabrication of parabolic surfaces, we have an opportunity to fabricate 

on-chip optical cavities with excellent surface finish (roughness ~  0.1 nm) and radii 

of curvatures ranging from 0.1 mm to 10 m. M iniaturization and microfabrication 

of high-finesse optical resonators has a potential to impact fields ranging from spec

troscopy to time-keeping.
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Chapter 5 

High-frequency Cavity  

Optom echanics using Bulk  

A coustic Waves

5.1 In troduction

The field of cavity optomechanics has successfully harnessed coupling between light 

and mechanical motion to perform precision measurements [141,142], create nonclas- 

sical mechanical states [143-145], and develop new technologies [146]. Building on 

these achievements, cavity optomechanical systems aim to harness optical control of 

mechanical motion for the exploration of fundamental physics and for classical as well 

as quantum  applications ranging from state-of-the-art microwave oscillators [59] to 

efficient microwave-1o-optical conversion [147-150].

For many of these lofty goals of cavity optomechanics, it is desirable to have opti

cal control of long-lived mechanical modes at high frequencies [117]. High frequencies 

(GHz) phonon modes can be initialized deep in their quantum  ground state  using stan

dard refrigeration techniques, opening doors to synthesis of more complex quantum
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states of mechanical motion. Long-lived phonons can preserve coherent information 

for extended periods of time, enabling robust control and storage of information in 

the mechanical modes.

A variety of micro/ nanoscale optomechanical systems [151-154] already exists 

to m anipulate mechanical motion at GHz frequencies. These systems have enabled 

ground state  cooling [155], quantum  control a t the single phonon level [144], and re

mote entanglement between mechanical resonators [145]. However, these microscopic 

structures, having large surface-to-volume ratios and pico-gram scale motional masses, 

are particularly sensitive to the effect of spurious laser heating [156], complicating the 

prospects for robust ground state operation.

In this context, bulk acoustic resonators offer a number of favorable properties 

th a t make them  enticing resources for cavity optomechanics. Since acoustic dissipa

tion plummets in crystalline media at cryogenic tem peratures, bulk acoustic phonons 

even at high frequencies exhibit very long lifetimes [75,106]. For example, in Ghapter 

4, we dem onstrated acoustic Q-factors as high as 42 x 10®, corresponding to lifetimes 

of 0.53 ms, for 12.7 GHz bulk acoustic phonon modes in quartz a t ~  lOK. Moreover, 

such long-lived phonon modes can be accessed in practically any transparent crys

talline substrate. So, we can choose our m aterial platform to minimize acoustic as well 

as optical losses or to add new functionality to our optomechanical system such as en

gineering coupling to defect centers. These modes of the bulk acoustic resonators live 

primarily in the bulk are less sensitive to surface interactions. The motional masses 

(~20|LLg) [106,111] of these acoustic modes are more than  1-100 million times larger 

than  those of comparable GHz frequency microscale and nanoscale optomechanical 

systems, perm itting bulk acoustic resonators to support large occupation numbers for 

both photons and phonons. Such large motional masses might also be particularly 

useful when studying decoherence phenomena in macroscopic objects. In addition, a 

single bulk acoustic resonator can support a m ultitude of long-lived phonon modes
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Figure 5.1: C avity  optom ech anical sy stem  using bulk acou stic  phonons
Schematic of a cavity optomechanical system formed by placing a bulk acoustic res
onator inside a Fabry-Pérot optical cavity. Brillouin interactions perm it resonant 
inter-modal coupling between two distinct standing wave modes of the optical cavity 
a t frequencies ujj and coj+i is mediated by a standing wave acoustic mode a t frequency 
Qrn formed within the bulk acoustic resonator (i.e. the quartz crystal). Adapted from 
Ref. [112] and Ref. [111].
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over a wide range (1-100 GHz) of frequencies, which could be harnessed for applica

tions ranging from low-noise microwave oscillators to quantum  memories.

In the previous chapter, we have shown th a t we can access these Brillouin-active 

phonon modes using free-space laser beams at cryogenic tem peratures. However, the 

optomechanical interaction strength for this process is rather weak because each laser 

beam passes through the crystal only once. Alternatively, it should be possible to 

access these phonons more efficiently by placing the bulk acoustic mode inside an 

optical cavity. This new system would not only perm it us to dram atically increase 

the optomechanical interaction strength but also leverage the well-developed cavity 

optomechanical techniques to harness bulk acoustic phonons for applications ranging 

from high-power lasers and oscillators to efficient quantum  transducers.

In this chapter, we describe a novel cavity optomechanical system th a t utilize 

high-frequency modes of a bulk acoustic resonator. We design our system so th a t 

the free-spectral range of the optical cavity matches the Brillouin frequency of the 

bulk crystalline resonator. We show th a t high-frequency bulk acoustic phonons then 

mediate resonant coupling between two distinct modes of an optical cavity through 

Brillouin coupling. Resonant driving of an optical mode within this multimode cav

ity optomechanical system perm its large coupling strengths (~  10 MHz) and high 

cooperativities (>700) as required for efficient control of phonons using light.

In the linearized interaction regime, breaking the symmetry between Stokes and 

the anti-Stokes processes in our optomechanical system can yield beam -splitter and 

two-mode squeezing Hamiltonian as a basis for quantum  protocols ranging from state- 

transfer to generation of non-classical mechanical states. In the next section, we 

discuss how we engineer the optical mode spectrum  to break the symmetry between 

the Stokes and anti-Stokes scattering process.
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Figure 5.2; L inearized H am ilton ian  o f  a p rotyp tica l cav ity  optom ech anical 
system , (a) In a single-mode optomechanical system, a red-detuned control laser 
produces a “beam -splitter” interaction [117], which can be used to transfer quantum  
states from light to mechanics or vice versa, (b) On the other hand, a blue-detuned 
control laser produces a “two-mode squeezing” Hamiltonian, which can be used to 
entangle light with mechanical motion.

5.2 A sym m etric  C avity  M ode Spacing

In a prototypical cavity optomechanical system, consisting of a single optical mode 

coupled to  a single mechanical mode, a variety of linearized interactions can be engi

neered by simply choosing the detuning of the laser drive with respect to  the optical 

cavity mode (see Fig. 5.2). By comparison, in our multimode optomechanical sys

tem, the  external field is typically on resonance with an optical mode, perm itting 

large intracavity photon numbers and hence large optomechanical coupling strengths 

(see Section 6  for more details). However, such resonant driving of the optical cav

ity mode presents a problem in the case of a Fabry-Pérot cavity with regular mode 

spacing. This is because a Brillouin active phonon mode, having frequency (flm) tha t 

matches the optical FSR, will resonantly scatter pump light a t frequency Uj to both 

cavity modes a t toj-i and with nearly equal probabilities (see Fig. 5.3a). There

fore, to break the symmetry between the Stokes and anti-Stokes scattering rates, we 

need to tailor the optical mode spectrum  so th a t one of the scattering process (say 

anti-Stokes) is no longer resonant (see Fig. 5.3b).

Fortunately, the introduction of a bulk crystalline resonator inside an optical cav-
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a  Unifonn density of s ta te s  in ab sen ce  of crystal reflections

b  Non-uniform density of s ta te s  in p resence  o f crystal reflections

U)j-2 U}j-\ U)j Wj+1 (jJj+2

Figure 5.3: T ailoring th e  op tica l m od e spectru m , (a) For a Fabry-Pérot optical 
cavity, the standing wave longitudinal optical modes are equally spaced, (b) The 
additional optical reflections a t the surfaces of the quartz crystal causes dispersive 
shifts of the cavity resonances. Adapted from Ref. [111].

ity provides an elegant strategy to engineer the optical mode spectrum. Even modest 

optical reflections a t the surfaces of the bulk acoustic resonator can shift the modes 

of the Fabry-Pérot cavity by an amount th a t is much larger than  the linewidth of the 

optical modes. As a result, the mode spectrum  of the Fabry-Perot cavity is no longer 

uniform. Using this non-uniform mode spacing, we can select a pair of optical modes 

{tOj-i and ujj) having frequency difference matching the phonon frequency and 

achieve high-selectivity between Stokes or anti-Stokes process, even when the external 

field is directly on resonance w ith an the optical mode.

To explore the modification to the optical mode spectrum  in detail, we consider 

the case of a planar quartz crystal (bulk acoustic resonator) th a t is placed inside a 

nearly hemispherical optical cavity having high-reflectivity (98%) mirrors. We can 

use the scattering/transm ission m atrix [118] to calculate the mode spectrum  of the 

optical cavity with the quartz crystal placed in between the two mirrors. We will 

show how the introduction of the quartz crystal causes the mode spectrum  to change 

dram atically as a function of optical mode number as well as the position of the
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Optical system

Figure 5.4: T ran sm iss io n  m a tr ix  t r e a tm e n t  to  d e te rm in e  o p tic a l m o d e  sp ec 
t ru m . The introduction of bulk crystal inside the optical cavity modifies the reflec
tion/transm ission spectrum  of the optical cavity, which can be explored using the 
scattering/transm ission m atrix  treatm ent. A dapted from Ref. [111].

crystal inside the optical cavity.

In w hat follows, we use a 1-dimensional model of a Fabry-Pérot cavity, which 

consists of optical mirrors having power reflectivities of Ri  and R 2  and transmission 

of Ti and T2 . We assume no absorption losses in the mirrors so th a t Ri-\-Ti =  1, where 

i  = 1,2. The power reflectivity a t each crystal face, Rq, is given by (1 — n )^ /(1 -j- n)^, 

where n  is the refractive index of the quartz crystal. For simplicity, we assume plane 

wave optical fields {E =  The phase shift (p acquired by an optical

field after propagating a distance z in a medium with refractive index n  is given by 

(p = k z  = nujz/c, where c is the speed of light in vacuum.

To calculate the reflection and transmission spectrum  of this cavity, we s ta rt by 

defining a transmission m atrix {T)  which relates the input field am plitudes a i , 0 2  to 

the output field amplitudes b\, 6 2  (see Fig. 5.4) as follows:

6 1 6 2

= r
ai Û2

(5.1)

Using the transmission matrices for a lossless m irror and for propagation in space are 

given by we can determine the to tal transmission m atrix  (T) for our optical system.
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which is given by

'T' — Tinirrorl ' 'TpropVacuum ' 'TmirrorQuartz ' TpropQuartz 

'TmirrorQuartz ' ‘TpropVacuum ' 'Trnirror2

(5.2)

- 1  n

- n  1

0 — I - 1  Tq
çi4>2 0

h -7-0 1 0

—i - 1  - ro 0 —i - 1  T2

to ro 1 0 t2 -T2  1
(5.3)

Here, n  =  ^/R[, =  y/R^, ro =  (1 -  n ) / { l  +  n), (pi = ud/c ,  (p2  — nu)L^^jc, (ps =

uj(Lopt — Lac — d)/c,  and d is separation between the crystal and the planar mirror. 

The normalized reflection (Pr(tu)) and transmission spectrum  (ft(w )) of our optical 

system can then be calculated from T  as follows

Pr(üj) = Ti2
2 1

and Pt(w) =
?22?22

(5.4)

W hile the analytical expressions for Pr and Pt can be derived in a straightforward 

way from Eqn. (5.2), they are quite cumbersome to display here. Using this analytical 

expression for Pr along with the known geometrical param eters {d =  0.15 mm, L^c =  

5.19 mm, Lopt= 9.13 mm, and n =  1.55), we compare the cavity mode spectrum  with 

and w ithout the quartz crystal inside the optical cavity near experimentally relevant 

wavelength (1550 nm or w/2?r ~  194 THz). For the case w ithout the crystal, we 

simply set n = l  and the analytical calculation reveals equally spaced cavity modes 

separated by the optical FSR (c/(2Lopt))- However, w ith the introduction of the 

quartz crystal the optical pa th  length increases and we observe th a t on average the 

spacing between the optical modes gets narrower. However, we also see a undulation 

in the free spectral range (i.e., change in the spacing between adjacent optical modes)
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Figure 5.5: U n d u la tion  in th e  op tica l m od e sp ectru m  du e to  th e  bu lk  crys
tal. (a) For a Fabry-Pérot, the standing wave cavity modes are spaced equally by the 
optical free spectral range (FSR) given by c/2Lopt- (b) This mode spectrum  changes 
dramatically when a medium with refractive index n is placed in between the two 
mirrors. In addition to the  overall decrease in the FSR because of increase in the 
optical path  length, the small-optical reflections 4%) on the quartz-vacuum inter
face shift the  modes of the Fabry-Perot cavity, (c) This gives rise to a large (~  20%) 
variation in optical FSR as a function of frequency. Adapted from Ref. [111].
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as a function of cavity frequency. This variation in FSR {{ujj+i — Wj)/27r) can be as 

large as 2.94 GHz between 1548 nm and 1552 nm (see Fig. 5.5c). Furthermore, the 

difference in FSR between adjacent optical modes (Aw =  w j|^  — w^g^) can be as 

large as 2.47 GHz; the param eter Aw is im portant because it quantifies the degree of 

asymmetry between the Stokes and the anti-Stokes scattering processes. Additionally, 

since the FSR variation is periodic as a function of cavity frequency, it is relatively 

easy to  find several pairs of cavity modes having FSRs th a t match Brillouin frequency.

The location of the crystal inside the cavity can be used as another knob to  tune 

the cavity mode spectrum. For instance, we observe periodic variations in cavity mode 

frequencies for each mode number j  (see Fig. 5.6b) as we change the position of the 

crystal from d to d + Ad.  This variation in cavity frequency was A/2 periodic, where 

A is the wavelength of the light; this is a result of crystal surfaces passing through 

the nodes and anti-nodes of the standing wave optical cavity modes. Therefore, we 

can change the displacement of the crystal to  m atch the optical FSR to Brillouin 

frequency.

Now, we compare experimental measurement of the cavity mode spacing with the 

analytical calculations. We perform cavity mode spectroscopy at cryogenic tem pera

tures by sweeping the laser wavelength between 1548 nm and 1552 nm and recording 

the back-reflected power (see Fig. 5.7 a). We use this reflection spectrum  to identify 

the resonant mode frequencies, Wj/27r and calculate the cavity mode spacing (i.e., 

FS R j=  (wj+i — Wj)/2 7 r). As expected from analytical calculations, we observed pe

riodic variation in cavity mode spacing (see Fig. 5.7b). However, because of the 

uncertainties in the geometrical parameters (such as a exact crystal position d) we 

took the exact crystal location as a free parameter. For d =  152.52 pm, we see a good 

agreement between the experimentally determined cavity mode spacing (black dots) 

and the theoretically calculated values (green dots) in Fig. 5.7c. W ith the quartz 

crystal inside the optical cavity, the maximum FSR variation of 2.6 GHz obtained
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Figure 5.6: V a r ia tio n  in  th e  o p tic a l m o d e  s p e c tru m  as a  fu n c tio n  o f c ry s ta l 
p o s itio n  (d). (a) A schematic showing how the crystal is displaced from its original 
location d to d +  Ad. (b) P lot of the optical mode frequencies (wj) (near 193 Thz 
or 1550 nm wavelength) as a function Ad. This plot reveals period variation in the 
optical mode frequency with a periodicity th a t is equal to half the wavelength of light, 
which corresponding to crystal moving through the nodes and the anti-nodes of the 
standing wave optical cavity modes. A dapted from Ref. [111].
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experimentally agrees well with the predicted value of 2.94 GHz.

As a consequence of this large (~  20%) undulation in the optical FSRs, we can 

achieve > 10^-fold difference in scattering rates between the Stokes and the anti- 

Stokes process. In a single-mode cavity optomechanical, such large asymmetry in 

the scattering rates is produced by far-detuning the drive. However, this reduces the 

intracavity photon number of the external drive field. In contrast, our multimode 

optomechanical system perm its greatly enhanced intracavity photon numbers since 

the external drive field is directly on resonance with an optical mode. The relative 

strength of the Stokes/anti-Stokes scattering rates in the case of resonant driving is 

determined by the ratio (2Aw//<)^, where A u is the difference in the FSR between 

then adjacent optical modes and k is the optical cavity linewidth. Because A u is 

well-resolved from the linewidth (i.e., 2Au//< ~  36 for optical cavities having mirrors 

with 98% reflectivity) we can virtually eliminate the Stokes or anti-Stokes interaction 

by resonantly driving the lower or higher frequency optical mode.

Symmetry breaking between the Stokes and anti-Stokes process allows us to simply 

consider the resonant coupling between two optical modes m ediated by bulk acoustic 

phonons. We develop a Hamiltonian formulation to explore such Brillouin mediated 

optomechanical coupling in the next section.

5.3 H am ilton ian  T reatm ent

In this section, we derive the to ta l Hamiltonian for our multimode system in which a 

single bulk acoustic mode at frequency mediates interaction between two optical 

cavity modes a t frequencies Uj and u^+i. We begin by deriving the Hamiltonian for the 

optical and acoustic fields and eventually add an interaction term  tha t characterizes 

the électrostriction mediated optomechanical coupling.
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5.3 .1  H am ilton ian  o f  th e  E lectro m a g n etic  F ields

We consider the case of an electromagnetic field having a single polarization (x—direction) 

th a t is subjected to the boundary conditions defined by the two mirrors. For simplic

ity, we assume th a t the electric field vanishes at the location of the left mirror (z =  0) 

and the right mirror (z =  Lopt)- Hence, when we expand the electric field into the 

normal modes (standing waves) of the optical cavity

Ex(z ,t )  =  ' ^ E j s m { k j z ) { â j { t )  +  d](t)), (5.5)
3

where àj is the normal mode amplitude, kj =  Uj/c, with j =  1 , 2 , 3 , . . . ,  and the 

zero-point amplitude of the electric field is

hujj
( 0 -^opt Topt=  J ? - - ,  (5.6)

where cuj is the frequency of the normal mode, is the effective relative perm ittivity 

of the optical cavity, Hopt is the effective transverse area of the optical mode, and 

Lopt is the optical cavity length. The zero-point fluctuation of the electric field was 

obtained knowing th a t the to tal electromagnetic energy per mode for the ground state

is hUj/2. Starting with the Hamiltonian for the electromagnetic fields

H°p‘ = l  f  dV  (eE" +  (5.7)
2 J v

and substituting the normal mode expansions for the electromagnetic fields, we obtain 

the quantized version of the electromagnetic Hamiltonian given by

= Y . t u ^ ,  ( a 'â j  +  t )  . (5.8)
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t l  _Note th a t the mode amplitude operators satisfy the commutation relations [àj, 

Sjjf and [àj.à'j] =  [à^à^] =  0.

5.3 .2  H am ilton ian  o f  th e  A co u stic  F ields

For the quantization of acoustic fields, we consider a longitudinally polarized {z- 

direction) acoustic held subject to  free boundary conditions at the surfaces of the 

crystal, which forms an acoustic Fabry-Perot cavity. As a starting point, we assume 

th a t the separation between the mirror and the crystal face (d) is vanishingly small 

(i.e., the crystal is hush with the mirror). We expand the acoustic displacement held 

into the normal modes (standing waves) of the Fabry-Pérot acoustic cavity

?/z(^, t) =  f/^cos(g^z)(&^(t) -b 5j^(t)), (5.9)
m

where bm is the normal mode amplitude, qm =  m7r/Lac, with m = =1 ,2 ,3 , . . ., and the 

zero-point amplitude of the acoustic displacement held

pA L n  '

Here Qrn is the frequency of the acoustic mode, p is the density of the medium, 

Aac is the effective transverse area of the acoustic mode, and Lac is the thickness of 

the acoustic Fabry-Pérot cavity. The zero-point huctuation of the acoustic held was 

calculated knowing th a t the total acoustic energy (kinetic plus potential) per mode 

for the ground state  is We start with the acoustic Hamiltonian

= dV  + I ,  (5.11)
2 / y
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where C  =  is the elastic coefficient and substitute the normal mode expansion 

to obtain the quantized version of the acoustic field

^  +  0 . (5.12)

Note th a t the mode amplitude operators satisfy the commutation relations [6^, ÿ^,] =  

and [6,^, =  0.

5 .3 .3  In teraction  H am ilton ian

To calculate the interaction Hamiltonian, we consider the interaction energy =  

— f y d V a  ■ S  for électrostriction mediated coupling between light and sound fields, 

where a is the electrostrictively induced stress and S  is the phonon m ode’s strain 

field. For the simple case of coupling between longitudinal acoustic waves propagat

ing in the z-direction with linearly polarized electromagnetic field in the ^-direction, 

the dominant stress component is given by cr =  cr̂  =  —(l/2)eoe^pi3£'a;(z)^ [49], where 

Co (cr) is the vacuum (relative) perm ittivity of the optical cavity, p i 3  is the relevant 

photoelastic constant of the crystalline medium, and is the electric field of the op

tical cavity mode. Similarly, the relevant strain  component S  = Sz = duz /dz ,  where 

Uz is the displacement field of the phonon mode. So, the interaction Hamiltonian for 

the optomechanical coupling is given by

~  2 J  —  . (5.13)

We now substitute the normal mode expansions for the electric field and the acous

tic displacement field from eqn. (5.5) and eqn. (5.9) into this interaction Hamiltonian
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and using the rotating wave approximation to obtain

^  y d y  sin(A;jz)sin(A;yz)sin(gTnz) +

(5.14)

The term  a]uj/6m in the interaction Hamiltonian represents the annihilation of 

an optical mode at frequency ujf and a phonon mode at frequency Qm to create a 

photon mode at higher frequency coj = ujf +  Qm (also called the anti-Stokes process). 

The other term  âjâj^bj^ represents the conjugate process, whereby a photon at lower 

frequency cuf and a phonon at frequency Qm are created from the annihilation of 

photon at ujj (Stokes process). Here, g'^ is the single-photon coupling rate, which we 

discuss in greater detail in the next section.

5 .3 .4  S in g le -P h o to n  C oup lin g  R a te

In a single mode optomechanical system, the single-photon coupling rate is a measure 

of the optical frequency shift due to the single excitation in the mechanical mode 

(or single phonon). In our multimode optomechanical system, this single-photon 

coupling rate describes the change in the frequency spacing between the two optical 

modes resulting from the dynamical modulation of the refractive index of the crystal 

produced by a single excitation of the mechanical mode.

Expressing the interaction Hamiltonian in Eqn. (5.14) as — E m  +

ajo}-,b\r )̂, we see th a t the single-photon coupling rate for inter-modal optomechan

ical coupling between two optical modes (wj, k j )  and ((^j+i, k j j ^ i )  mediated by a 

phonon mode {Qm^q-m) is given by

^  y  d y  sin(A;j+iz)sin(A;jz)sin(g^z). (5.15)
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From this equation, we see th a t depends on the spatial overlap of the optical and 

acoustic fields inside the crystal. Using a trigonometric identity,

sin(A) • sin(B) • sin(C) =  l/4(-sin(A -B -C )+sin(A +B -C )+sin(A -B +C )-sin(A +B +C )),

(5.16)

we see th a t non-zero spatial overlap and, hence, a non-zero coupling rate occurs 

when the phase-matching requirement {qm =  -f k' )̂ is satisfied. Note th a t the 

finite integral volume in Eqn. (5.15) means th a t this phase-matching condition is 

relaxed and more than  one-phonon modes near the Brillouin frequency yield non-zero 

optomechanical coupling rate.

Note tha t, up until this point, we assumed th a t the crystal face is flush with the 

planar mirror (i.e. d =  0). However, the position of the crystal inside the optical 

cavity can affect the overlap integral of the acoustic and optical fields (Fig. 5.8a). 

For example, the nodes of the strain profile could line up with the anti-nodes of the 

optical forcing function, resulting in zero optomechanical coupling.

If we now account for the separation (d) between the crystal and the mirror and 

substitute the zero-point amplitudes of the electric and acoustic fields we obtain

c  -  A ^ o 4 p m ,n \ l  e i f A l i

j  dz sin [k'j^i -  d +  ^ sin ^z — d +  ^ sin {qm{z — d ) ) .

(5.17)

The phase factors for the sine functions come from the appropriate boundary con

ditions on the electric and acoustic fields at the crystal and mirror surfaces. For 

simplicity we have assumed A^c =  Aopt =  A. Here, /c' =  nkj  denotes the wavevector 

of the optical modes inside the crystal.

From this equation we see th a t the maximum coupling rate  to a single acoustic
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Figure 5.8: V ariation  in th e  coupling ra te  as a fu nction  o f th e  crysta l p osition  
(d). A schematic showing the displacement of the bulk acoustic resonator inside 
the optical cavity, (b) Optomechanical coupling occurs to a small set of phonon 
modes (indexed by longitudinal mode number m) near the Brillouin frequency. For 
an arbitrary  crystal displacement, we still have appreciable coupling at least one 
phonon mode. Coupling to an individual phonon mode (say m  =  20725) is periodic 
as a function, (c) Line cuts to this plot (in b) shows how it is possible to engineer 
coupling to primarily one (inset i), two (inset ii) or three phonon modes (inset iii) by 
changing the crystal displacement. Adapted from Ref. [111].
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mode occurs when the crystal positions is such th a t the nodes (anti-nodes) of the 

strain profile line up with the nodes (anti-nodes) of the optical beat tone. This 

maximum coupling ra te  can be determined from Eqn. (5.17) and is given by

~ / h
2 cr4  \j p A L A  Lopt'  ̂ ’

where Ugff is the effective refractive index of the optical mode, and we assumed ujj+i ~  

ujj, so th a t Qm =  +  k'j % Inujjjc.  Note th a t the simplified derivation presented

above, we did not account for the variation in the transverse mode area (~  30 % ) 

of the Gaussian optical and acoustic beams. To calculate the coupling rate  within 

our actual system, we perform acousto-optical overlap integral in Eq. (5.15), taking 

into account the actual mode profiles of the optical and acoustic fields (see Fig. 

5.9). This calculation for optical modes near 1551.0335 nm tha t are separated by 

Qm =  27T X  12.645 GHz, yields a maximum coupling rate g ' ^ I ~  24 Hz in our 

system. Note th a t we used these experimentally relevant geometric and material 

param eters for the calculation of g^\ pi^ = 0.27, n  =  1.55, p =  2648 kg/m^, Va =  

6327 m /s. Lac =  5.19 mm, and Lopt =  9.13 mm.

A density plot in Fig. 5.8b reveals how optomechanical coupling rate changes 

with acoustic mode number and the crystal displacement. We see th a t appreciable 

optomechanical coupling occurs to  a few modes near the Brillouin frequency {Qm = 

m  X Ua/2L % 12.645GHz). The bandwidth of coupling (Az/g =  1.76ug/2Lac) is 

~  1.1 MHz in our system. For an individual phonon mode (say m =  20725), coupling 

rate  is periodic in the crystal displacement (see Fig. 5.8b) and as explained before 

it can be zero at certain crystal positions (see Fig. 5.8b.ii). Fortunately, for any 

arbitrary crystal position, we still obtain an appreciable optomechanical coupling to 

least one phonon mode. This is a consequence of the finite length of the crystal, 

which relaxes the phase-matching condition. Therefore, as long as the linewidth of
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Figure 5.9: O p tic a l a n d  a c o u s tic  m o d e  profiles. We use ABCD m atrix for Gaus
sian beam propagation to determine optical mode waist inside the optical cavity. 
Since, acoustic modes in a planar crystal are not confined laterally (or in the trans
verse direction), we assume th a t the transverse mode profile is simply given by the 
profile of the forcing function, which is proportional to the square of the optical field. 
A dapted from Ref. [111].

the optical mode (/v/27t) is greater than  the phase-matching bandw idth (Ai/g), we 

observe appreciable optomechanical coupling to a t least one phonon mode irrespective 

of the crystal position.

Changing the position of the crystal inside the cavity offers one approach to tai

loring the coupling ra te  to  one or more phonon modes (Fig. 5.8c). Alternatively, we 

can change acousto-optic overlaps by changing the wavevector of the optical fields by 

moving to a different pair of optical resonances having frequency difference matching 

the Brillouin frequency. Initially, we chose this approach as it avoids the experimen

ta l complexity of adding a piezo-actuator in our optomechanical system. However, 

piezo-actuation would provide a more controllable way to vary the coupling strength 

and we are currently in the process of upgrading our optomechanical system to allow 

such in situ control.
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Figure 5.10: B ilinear in teraction  H am ilton ian  (a-b) An external control laser 
which is on resonance with the lower (higher) frequency optical mode produces a 
“beam -splitter” ( “two-mode squeezing”) interaction w ithin our multimode system. 
Since the laser is directly on resonance with a cavity mode, we can dramatically 
enhance the coupling rates for such interactions.

5.4 O ptom echanical coupling in th e  linearized regim e

In the earlier section, we saw th a t Brillouin interactions (i.e. oc +

H.c.)) yield intrinsically nonlinear coupling between optical and acoustic fields. This 

nonlinearity plays a crucial role in a variety of experiments in the classical regime such 

as param etric instability of a mechanical mode. However, to exploit this nonlinearity 

for applications in the quantum  regime such as deterministic preparation of non- 

classical mechanical states, we need to achieve single-photon coupling strength (g^)  

th a t is larger than  the dissipation rates of both the optical (k) and acoustic modes 

(Pm)- It would be very difficult to  access this regime in our optomechanical system 

since g ^  («:, Pm)- Nevertheless, by using a external laser drive, we can transform  

our intrinsically nonlinear coupling into a linearized interaction and use it to dra

matically enhanced optomechanical interaction strength. Despite sacrificing intrinsic 

nonlinearity to  obtain large coupling strengths, we can use single-photon sources or 

single-photon detection and post-selection to add nonlinearity in our system.

Next, we describe the linearized Hamiltonian of our system in presence of an 

external laser drive. L et’s consider the case when the laser field is on resonance with



the lower frequency optical mode (wi) as seen in Fig. 5.10 a. The to tal Hamiltonian 

of our system in presence of the external laser drive is given by

H  =  hLJia\ai +  &J2 U2 U2  +  hQrnblnbm -  +  6 ^ 4 ^ 2 ) +  ^drive, (5.19)

where the Hamiltonian for the drive field is given by .Ĥ drive =  +

H . C . ,  is the external coupling rate of the optical mode, and a\n is the input laser 

amplitude. The input laser field is normalized such th a t the input laser power P  = 

hüüi {airain)- This external drive field causes resonant build-up of photons in the mode 

wi. To calculate this average coherent amplitude (ui), we assume a strong control 

laser; within this undepleted pump approximation we assume th a t the dynamics of the 

mode at frequency Ui is not influenced by the optomechanical coupling (i.e. —> 0).

Then, we arrive at the following equation of motion from the Hamiltonian in Eqn. 

(5.19)

ài[t) =  ^ CLi +  (5.20)

where the optical dissipation rate  k,i =  2 /(^  +  k, ,̂ K,f̂  ̂ is the loss rate at each cavity 

mirror and A;f is the loss rate inside the cavity. Since we are focused on the classical 

average quantities, we have the noise term  in writing down the above equation of 

motion. From eqn. (5.20), we obtain the following steady state  solution for mode ai

W ) =  (5.21)
K,i

where Ni  is the average intracavity photon number for mode ai.

In the undepleted pump regime, we substitute (ui) in eqn. (5.19) to derive the 

following linearized Hamiltonian for the interaction between the optical mode 0 ,2  and
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t h e  p h o n o n  m o d e

H  = hW2(l\cL2 +  ~  ^ 9 ^

By working in the rotating frame of Hq = ^ 1 2̂ 2 ^ 2  (i.e., 0 2̂ (t) -4- a2 {t)e~^^^^), we 

obtain an effective Hamiltonian

HeS = fiA<32<32 +  hQrn^lj^^rn ~  %m(<22^m +  (5.22)

where A =  W2  — Wi and gm = g ^ V ^  is the cavity-enhanced coupling rate.

In this way, resonant driving of the lower frequency optical mode in our op

tomechanical system produces beam -splitter type interaction Hamiltonian given by 

-hgmialbm  +  >̂1^0 ,2 ). Since Ni  oc |oinP, gm can be greatly enhanced by increasing the 

strength of the laser drive field. Time dependent control of gm[t), could then be used 

to perform deterministic state  swaps between photons and phonons once we reach 

the optomechanical strong coupling regime. We will discuss this in greater detail in 

Chapter 6.

For the case when the external laser drive is on resonance with the higher frequency 

optical mode W2 , we can follow an approach similar to the one outline above to derive 

the following effective optomechanical Hamiltonian

F/gff — fiAu^Ui T  ^9m(,^l^m T  (5.23)

Therefore, resonant driving of the higher-frequency optical mode produces two-mode 

squeezing interaction th a t can be used for param etric application of both the optical 

(ui) and the acoustic mode (6^). In addition, such interactions can be used to 

generate entanglement between light and mechanics and single-photon detection and 

postselection can be used to generate nonclassical mechanical states [144].
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Figure 5.11: O ptom ech an ica lly  ind uced  transparency  in a s in g le-m od e op
tom echan ica l sy stem , (a) Schematic showing a "control' laser th a t is red-detuned 
from an optical cavity mode by 0 ^ . A weak laser then probes the transmission 
spectrum  of the optical mode, (b) W ithin a ring resonator geometry, the probe light 
inside the cavity destructively interferes with the anti-Stokes light generated from op
tomechanical scattering, (c) As a result, the optical transmission spectrum  develops 
a narrow transmission band at cucav

5.5 C oherent O ptom echanical response

To explore the optomechanical coupling in our system (i.e., to characterize gm, K, and 

P ^), we use a weak probe laser in addition to a strong control laser, which gives rise to 

two well-known coherent phenomena called Optomechnically Induced Amplification 

(OMIA) and Optomechanically Induced Transparency (OMIT) [157-159]. We outline 

a theoretical framework to understand such coherent phenomena in the next two 

sections.

5 .5 .1  O p tom ech an ica lly  In d u ced  T ransparency (O M IT )

In a conventional single mode optomechanical system, when a strong control laser is 

red-detuned from a cavity response, the cavity response for a weak probe develops a 

narrow transparency window (see Fig. 5.11). This phenomena occurs as a result of 

destructive interference between the intracavity probe field and the anti-Stokes field 

generated through the optomechanical interaction. In an optomechanical system 

consisting of a ring-resonator-type optical cavity, the transmission spectrum  for the 

probe light in presence of a strong red-detuned control laser becomes non-zero in a 

narrow band around the optical resonance. Therefore, this phenomena is analogous to
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electromechanically induced transparency, in which the optical absorption spectrum  

of a three-level atom  develops a transparency dip due to  interaction w ith coherent 

laser fields.

The destructive interference between intracavity probe field and the anti-Stokes 

light, which we refer to  as OMIT, also occurs in our optomechanical system when 

the control laser is on-resonance with the lower-frequency optical mode uji. However, 

since we are using a Fabry-Perot-type optical cavity, the transmission spectrum  for 

the probe light develops a narrow dip, which looks like absorption. Therefore, to 

avoid any confusion due to  the naming convention, we just focus on the dynamics of 

the intracavity probe field.

To derive the dynamics of the intracavity probe field for a more general and ex

perimentally relevant case, we assume th a t the optical mode spacing does not exactly 

m atch the phonon frequency (wg — % 11^) and the control laser is also slightly

detuned from the lower-frequency (wi) optical mode. The Hamiltonian of our op

tomechanical system th a t accounts for the external drive fields (i.e., the control laser 

and the probe laser) is given by

H  =  hüüia[ai +  hüJ2a\a2 +  hVtmh\j)m -  hg'^{a\aihm +

+  -  ase” »*). (5.24)

Here, ai (op) is the input control (probe) laser amplitude. Note th a t we normalize 

the incident optical power launched into the cavity such th a t P/ =  hui {cujcg) and 

Pp =  huji {â pCUp). We assume a strong control laser and a weak probe; assuming 

undepleted pump approximation, we can derive the following steady state  coherent 

amplitude for mode ai

(5.25)

102



where Ni  is the control laser driven intracavity photon number for mode and 

Ai =  LÜI—LÜI. (see Fig. 5.12 a). In the undepleted pump regime, we substitute {ai) in 

eqn. (5.19) to derive the following linearized Hamiltonian for the interaction between 

the optical mode < 22 and the phonon mode bm

H  =  hw2a\a2 +

+  -  aae” ”*)- (5.26)

From this Hamiltonian, by rotating in the frame of Hq =  h{u)p—uji)bl„bm+hhjp0 ^a 2 (i.e. 

<2 2 (t) -4- a2 (t)e~'^'^P and bm{t) -4 we obtain an effective Hamiltonian

F/eff — ~ ^ b b \^ b m  ~  F (5 +  A 2)<22ti2 ~  ^ 9m {(^2^m +  ^ m ^ s) +  i J î \ / 0!p{ a2  <22),

(5.27)

where ô = Q — üm = cOp—uJi — Qa, and A 2  =  Ha+Wf—W2 , and the cavity field-enhanced

coupling rate Qm =  9 o ' \ / ^ -  The Heisenberg equations of motions derived from this

Hamiltonian,

5,2(t) =  ^i(S -h A 2 ) — —  ̂ <22 +  igmbm +  (5.28)

bm{t) = ^ 2 6 ---- —^ b-\-i9mCi2, (5.29)

can be used to derive steady state  values for the phonon and photon numbers

(5.30)

^ (5. 31) 
*(5 +  A 2 ) - f +  ^

Once we know the intracavity photon number for mode <2 2 , we can use input-output 

formalism for a symmetric Fabry-Pérot cavity, assuming laser fields incident only on
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Figure 5.12: O ptom ech anically  ind uced  transparency  in  a m u ltim od e op
tom echan ica l sy stem , (a) A strong red-detuned control laser a t frequency lji is on 
resonance with a lower-frequency optical mode at while a weak probe a t ujp is swept 
near the higher frequency optical mode at U2 - (b) A sharp dip on the transmission 
spectrum  as a result of destructive interference between the intracavity probe field 
and the anti-Stokes field generated through the optomechanical interaction. Adapted 
from Ref. [111].

one of the mirrors, to obtain the transm itted  light field

^ 2 , o u t  —  ' \ /  ̂ 2  ^ 2  —
P (5.32)

i 6 ~ T m / 2

In experiments, we use heterodyne detection of the transm itted  probe light to measure 

the intracavity photon number. The power spectrum  of this heterodyne signal a t the 

detector is given by

P d { d )  o c  ( 4 , o u t ^ 2 , o u t >  =

e x t

t(0 4- A 2 ) -  ^  +  n zi S - T m / 2

(5.33)

To highlight the salient features of this power spectrum , we consider the simpler 

case when the  frequency difference between the optical modes is exactly equal to the 

Brillouin frequency (wg — ui = Clm) and the control laser is directly on resonance 

with the optical cavity mode Oi (A 2  =  0), we can use eqn. (5.31) to derive a simple 

expression for the intracavity field

Ü2 =
- y ^ a p

_j______Q m —2 ^  iS-rm/2
(5.34)
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Since Tm K2  in our experiments, we get the following spectrum  for the intracavity 

anti-Stokes («2 ) near the phonon resonance (i.e., H

/ 2 (iô  — r ^ / 2 )  y//i:2^Y i^2 <^pa2[à) ~  -

_ 2(z(n — üm) — F^/2)a//i:2''V^2«p /K
-  , . { Ü  -  n „ )  -  I f  ’

where C  =  4|^^pA^i/(yc2rm) is the cooperativity, and Fgff =  F ^ ( l  4- C) is effective 

acoustic dissipation rate.

W ithout optomechanical coupling (i.e. =  0), we see th a t the peak intracavity

field is given by

.ext
4  (^m) =  2 A—— Œp. (5.36)

K,2

However, with optomechanical coupling the intracavity field on resonance is given by

/y.ext
=  2  (5.37)

yc2  V t 4 - O J

Therefore, the relative dip in the OMIT spectrum, which is given by

^ 2  (f^m)
^2 (f^m) (1 + c y

(5.38)

can be used to directly measure the value of cooperativity (C) in our optomechanical 

system.

5.5 .2  O p tom ech an ica lly  In du ced  A m p lifica tion  (O M IA )

W hen a strong control laser is on-resonance with the higher-frequency optical mode 

ÜJ2 , amplification of the intracavity probe field occurs as a result of constructive in

terference between the intracavity probe field and the Stokes field generated through
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Figure 5.13: O p to m e c h a n ic a lly  in d u c e d  am p lif ic a tio n  in  a  m u ltim o d e  o p 
to m e c h a n ic a l sy s te m , (a) A strong blue-detuned control laser a t frequency toi is 
on resonance with a higher-frequency optical mode at W2  while a weak probe a t cOp is 
swept near the lower frequency optical mode a t tOi. (b) A sharp peak on the trans
mission spectrum  as a result of destructive interference between the intracavity probe 
field and the Stokes field generated through the optomechanical interaction. Adapted 
from Ref. [111].

the optomechanical process (see Fig. 5.13). Following an approach similar to the one 

outlined in Section 5.5.1, we can derive the following steady state amplitude for the 

optical mode ai

(5.39)
iÔ-\-Trr}./2

In experiments, we use heterodyne detection of the transm itted  probe light to measure 

the intracavity photon number. The power spectrum  of this heterodyne signal a t the 

detector is given by

e x t

?:(5 -  A i) -  +  zi?iS+Tm/^
(5.40)

If we assume th a t the  frequency difference between the  optical modes is exactly 

equal to the Brillouin frequency (wg — =  f ^ )  and the control laser is directly on

resonance w ith the optical cavity mode ug (A 2  =  Aj = 0 ) ,  we can derive a simple

106



expression for the intracavity field

- e x t , „

a\ = —---- —— -— 2̂----- • (5.41)9m.
2 —iô-\-Y'm/2

Since <K in our experiments, we get the following spectrum  for the intracavity 

Stokes (<2 i) near the phonon resonance (i.e., Q % Ü^)

2(zd — Fn^/2) / KiCtp

2(z(flrn -  ^ )  -  r m / 2 ) v ^ i  /« lû ip  /r  .r,)

=  i ( n „ - n ) - ! f  ’

where C = 4A2|po^P/(^irm ) is the cooperativity, and Feff =  Fm(l — C) is effective 

acoustic linewidth.

W ithout optomechanical coupling (i.e. pm — 0); we see th a t the peak intracavity 

field is given by

/ Z e x t

a ; ( n „ ) = 2 ^ ^ a „ .  (5.43)
K,i

However, with optomechanical coupling the intracavity field on resonance is given by

/^ext
= 2— /  ̂ ckp (5.44)Ki[l. — U)

Therefore, the relative peak height of the OMIA spectrum

0̂1 (f^m)
(̂ 1 (f^m) ( 1 - C ) 2 '

(5.45)

can be used to directly measure the value of cooperativity (C) in our optomechanical 

system.
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5.6 E xperim ental Setup

In this section, we describe the experimental apparatus used to perform OMIT and 

OMIA measurements. Before, we can perform such measurements, we first need to 

identify a pair of optical modes having frequency spacing th a t matches the Brillouin 

frequency. Therefore, we begin by describing the experimental apparatus used to 

select an optical mode pair suitable for resonant Brillouin interaction.

5.6 .1  S e lectin g  an op tica l m od e pair

Bulk acoustic modes a t high-frequencies mediate resonant inter-modal coupling be

tween two distinct optical modes when energy conservation and phase-matching re

quirements are both satisfied (for details see Ref. [111]). As discussed before, such 

requirements yield a characteristic ‘Brillouin frequency’ fig. For optical wavelengths 

near 1.55 pm, we expect acoustic modes near fig — 27t x 12.6 GHz to m ediate such 

phase-matched Brillouin interactions. Since the longitudinal sound velocity in quartz 

depends on tem perature, Brillouin frequency changes (by about 200 MHz) as we cool 

our crystal from room tem perature to cryogenic tem peratures. This change is typi

cally much larger than  the optical cavity linewidth, which of the order of 1-100 MHz. 

However, stim ulated Brillouin measurements using free-space laser beams (i.e. with

out the optical cavity) presented in Chapter 3 can be used to precisely determine fig 

at cryogenic tem peratures.

To identify a pair of optical resonances th a t m atch the Brillouin frequency, we 

measure the refiection spectrum  of the optical cavity using a setup as shown in Fig. 

5.14a. The output of a continuously-tunable laser (Agilent 8164B) is split into two 

arms. Light in one arm is coupled into the optical cavity through a fiber-optic col

limator, a free-space polarizer, a mirror, and a lens. Light back-refiected from the 

optical cavity is collected using the same collimator, separated from the input light
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using a fiber circulator, and measured using a photodetector (Thorlabs PDA10CS2). 

Light in the other arm is coupled to a fiber Fabry-Pérot (FFP) cavity formed by a 

length of single mode fiber th a t is imperfectly coupled at one end. The back-refiected 

light from this FF P  cavity is separated from the input light using a fiber circulator 

and detected using a photodetector (PDA10CS2). Small (~  4%) refiections at the 

fiber-air surfaces, results in a sinusoidal refiection spectrum. Agilent laser sweeps 

the wavelength continuously at a speed of 2 nm/sec. However, since the wavelength 

sweep is not perfectly linear as a function of time, we use the refiection spectrum  of 

the FFP cavity as a frequency ruler for our swept measurements. This allows us to 

rapidly determine optical free-spectral ranges (FSR) (~  13 GHz) with an accuracy of 

~  1 MHz for wavelength scans over several nanometers.

From the refiection spectrum  obtained by scanning the wavelength from 1556 to 

1558 nm as seen in Fig. 5.14b, we determine the optical FSRs as a function of laser 

frequency. Such measurements, an example of which is shown in Fig. 5.14c, reveal 

a significant (~  20%) modulation in the FSRs. Due to the m odulation in the FSR, 

we can easily find several pairs of optical modes having FSRs close to the Brillouin 

frequency. We can also tune to cavity FSR by slightly changing the length of the 

invar holder th a t holds the mirrors and the bulk crystal using slight therm al tuning of 

the cryostat tem perature. We use a proportional-integral-derivative (PID) controller 

(Cryocon 22C) to control the cryostats’ tem perature, perm itting us to precisely m atch 

the optical FSR to the Brillouin frequency.

5 .6 .2  P rob in g  th e  coh eren t resp on se

To perform OMIT and OMIA measurements, we derive both the control and probe 

laser from the same tunable laser source (Purephotonics PPCL 300). The laser output 

a t frequency uji is intensity m odulated intensity-m odulated at a variable frequency Q 

using a microwave signal generator (Agilent E8257D), generating additional optical
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Figure 5.14: F in d in g  an op tica l m od e pair to  m atch  B rillou in  frequency, (a)
Schematic of the measurement apparatus used to find optical mode pairs to match 
Brillouin frequency. Light from a tunable laser source is continuously swept and the 
back-reflection power from the optical cavity (with bulk crystal) is measured as a 
function of time. Since this frequency sweep is not perfectly linear as a function 
of time, we use a separate Fiber Fabry-Pérot cavity to calibrate the frequency axis, 
(b) Measured back-refiected power obtained by sweeping the laser from 1548 to 1552 
nm. High resolution spectra near 193.42 THz shows unequal free-spectral ranges due 
to  the introduction of quartz crystal inside the optical cavity, (c) This variation in 
optical FSR as a frequency of optical mode frequency allows us to relatively easily 
find multiple pairs of optical resonances tha t m atch the Brillouin frequency. Adapted 
from Ref. [111].
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side-bands at loi ±  For OMIT (OMIA) measurements, the tone at frequency uji 

serves as a strong control laser, whereas the weak tone at H (loi — VÎ) serves as 

a probe laser. The other side-band at w/ — Ü (w/ +  H) is irrelevant during OMIT 

(OMIA) measurements, as it is not resonant w ith any optical cavity modes because 

of the unequal optical FSRs. the The intensity-modulated light is amplified using 

an erbium-doped fiber amplifier (EDFA) and coupled into the optical cavity using a 

fiber-optic polarization controller, a collimator, a free-space polarizer (or a polarizing 

beam splitter cube), a mirror, and a lens. The fiber-optic variable optical attenuator 

placed after the EDFA is used to vary control laser power incident on the cavity.

The free-space polarizer allows us to select polarization of the input light. We 

chose uniaxial 2 -cut quartz crystal so th a t the light propagating along the optical 

axis sees the same refractive index regardless of the transverse polarization of the 

optical beam. However, when we put the crystal inside the optical cavity and the 

invar holder, the optical cavity develops a very slight birefringence (An ^  10“^). 

This leads to optical mode splittings typically on the order of 10s of MHz. Therefore, 

the free-space polarizer allows us to selectively couple to one of these two orthogonal 

polarization modes.

The light back-reflected from the cavity is separated from the incident light using 

a circulator. This back-reflected light is monitored to ensure th a t the control laser is 

on resonance with an optical mode throughout the measurements. Light transm itted 

through the optical cavity is collected using a free-space lens, a mirror, and a fiber 

optic collimator. This light is then detected using a photoreceiver (Nortel Networks 

PP-IOG) th a t is connected to a radio-frequency (RF) spectrum  analyzer (Agilent 

N9030 A). The spectrum  analyzer monitors the beat-note between the transm itted 

control laser and the transm itted  probe laser by tracking the frequency (D) of the 

microwave signal generator (Agilent E8257D). Heterodyne detection of the probe 

light transm itted through the optical cavity provides a direct measurement of the
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Figure 5.15: Schem atic  o f  th e  exp erim en ta l se tu p  used to  perform
O M IT /O M IA  m easurem ents. A strong control laser and a weak probe laser 
are synthesized from the same laser source using an intensity m odulator. The con
trol laser is on resonance w ith an appropriately chosen optical mode whereas the 
weak probe laser is swept through the other optical cavity mode. To determine the 
coherent-response of the intracavity probe field due to optomechanical interaction, 
we measure the transm itted  probe light using heterodynme detection. A dapted from 
Ref. [111].

intracavity probe power.

5.7 M easurem ents o f O M IA /O M IT

In this section, we use both OMIA and OMIT measurements to determine optical 

dissipation ra te  («), mechanical dissipation rates (F), and the single-photon coupling 

strength {g^).

We begin by selecting a pair of optical modes {see Fig. 5.14 b) with mode spacing 

of 12.65 GHz, which matches the Brillouin frequency. For the OMIA (OMIT) mea

surements, the control laser is placed directly on resonance w ith the higher (lower) 

frequency optical mode at wg (wi) and the weak probe laser a t w/q=n is swept through 

the optical mode at uji (^ 2 ) as seen in Fig. 5.15. Heterodyne detection of transm itted 

probe light revealed an optical cavity resonance of linewidth « 2  — 27t x 71 MHz and
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k,2 — 2tt X 81 MHz, consistent with the m irror’s reflectivity of 98%. This modula

tion in the optical cavity linewidth occurs when a dielectric medium is introduced 

inside the optical cavity when the dielectric medium introduces additional losses (for 

instance, due to tilt of the crystal relative to the optical cavity axis) [160].

Near the center of the optical resonance, we find a narrow OMIA peak (OMIT 

dip) resulting from optomechanical coupling to a phonon mode at 12.645 GHz. From 

the derivation in Section 5.5, we know th a t the effective optomechanical Hamiltonian 

predicts a relative OMIA peak height (OMIT dip) of 1/(1 ^  C)^, when Ü = 

Moreover, the linewidth of this OMIA peak (OMIT dip) is given by Pgff =  (l=pG )F^. 

So, to determine and F ^ , we varied the control laser power and measured relative 

heights and the linewidths of the OMIA peaks and OMIT dips (see Fig. 5.16). As 

expected from theory, the measured values of cooperativity varied linearly with control 

laser power (Pin) as we varied it from 7.8 mW  to 118 mW. Moreover, the Fgff for the 

OMIA peaks (OMIT dips) decreased (increased) linearly with Pn- Extrapolating the 

linear fit in Fig. 5.17a to zero input power (i.e. C  —> 0), gives Tm — 2tt x  86 kHz. 

This corresponds to an acoustic (^-factor of 1.5 x 10^. Note th a t the acoustic Q- 

factor in this system is dominated by diffraction losses and is analogous to diffraction 

losses within an Fabry-Pérot optical cavity. Finally, using C, k, and F^i, obtained 

from these measurements, along with intracavity photon number N 2 calculated by 

measuring the input control laser power p n  gives a values of g~̂  % 27tx18 H z . This 

value of g'^ is consistent with the theoretically predicted value of 27tx24 H z . Note 

th a t for the calculation of N 2 we assumed critical coupling and negligible internal 

losses.

It is also possible to configure our system, so the optomechanical coupling is me

diated by more than  one phonon modes. As explained in Section 5.3, we change the 

optical wavelength and select a different pair of optical resonances to tune coupling 

to one or more phonon modes. A typical OMIA spectrum  in which the optomechan-
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Figure 5.16: O M IT /O M IA  m e a su re m e n ts . (a)We engineer our system to  couple 
primarily to a single phonon mode a t 12.645 GHz and perform OMIA measurements. 
We measure OMIA peak heights as a function of input control laser power. We 
observe th a t the peak height increases non-linearly with control laser power, (b) We 
perform OMIT measurements by simply red-detuning the control laser. The OMIT 
dip is not exactly a t the center of the optical resonance because the control laser is 
not exactly on resonance with the lower frequency optical mode. We observe th a t the 
OMIT dip decreases non-linearly w ith control laser power. A dapted from Ref. [111].
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OMIA signal to calculate cooperativity C  as a function of input control laser power. 
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to determine % 27tx 18 Hz. A dapted from Ref. [111].
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High resolution OMIA measurement near the near the center of the optical resonance 
reveals three high-frequency acoustic modes around 12.661 GHz with frequency spac
ing of ~  610 kHz, which is consistent with the acoustic free spectral range of Val2Lac. 
Adapted from Ref. [111].

ical coupling is mediated by more than  one phonon modes is shown in Fig. 5.18. 

Near the center of the transmission spectrum, we observe multiple narrow resonances 

corresponding to  standing wave longitudinal phonon modes near Qq % 12.661 GHz. 

These OMIA peaks are spaced equally by 610 kHz, consistent with the acoustic 

FSR of Va/{2L^c)-

So far, we have probed the coherent response of our optomechanical system and 

used it to  determine g ^ , «, and F^ . However, even in absence of the probe laser, the 

control laser can spontaneously scatter into Stokes and anti-Stokes sideband due to 

therm al fluctuations in the mechanical modes. We explore this in greater detail in 

the next two sections.

5.8 T herm al F lu ctu ation s and P h on on  Lasing

W hen the control laser in on resonance with the higher frequency optical mode (wg), 

a therm ally populated phonon mode (0^%) mediates scattering of incident control
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photons from frequency W2  io uji — üü2 — ^  through Stokes process.

To derive the power spectrum  of such spontaneously scattered Stokes light, we 

begin by considering the effective optomechanical Hamiltonian in Eqn. (5.23),

F/gff =  T  ^^rrJ^rnPm T  (5.46)

where we assumed th a t the optical mode spacing exactly matches the phonon mode 

frequency (i.e. A  = CJ2 ~  = ^m ), 9m = and N 2 is the intracavity photon

number of mode ü2 . The Heisenberg-Langevin equations of motion derived from this 

effective Hamiltonian are given by

hi =  ( i ^ m  CLl +  Wmblni (5-47)

i>m =  — ---- +  'Î9mO\ +  \/^mbmi (5.48)

where bin(t) is the input therm al fluctuation th a t drives the phonon mode. We assume 

a Markovian noise process (see Ref. [161]) such th a t

(hinWL(̂ O) = Mtbh(t -  3̂, (5-49)

(L(^)hL(^O) =  (^ h  +  l)h(^ -  f  ). (5.50)

Here, ( . . .)  represents an ensemble average, and nth =  — 1)"^ denotes the

average number of therm al phonons of angular frequency Qrn at tem perature T. For 

instance, at a tem peratures of 10 Kelvin, nth — 16 for 12.645 GHz phonon modes. 

In contrast, the optical fields have essentially zero therm al occupation even at room 

tem peratures since they are a t much higher frequencies (~  200 THz). Therefore, we 

ignore therm al fluctuations of the optical field in our calculations. Furthermore, we 

assume th a t the externally driven laser source is a pure coherent tone (no added noise 

from the laser itself), which is a good approximation for our experiments.
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We now use Fourier-transform (defined as f{ f l )  =  dt to solve eqns.

(5.47-5.48) in frequency space, which are given by

where we define

(5.53)

Here, ôf7^(f7) =  Re{E(f7)} gives us the frequency shift of the phonon mode and 

Fopt(f^) =  —2Im{E(f7)} gives us the optomechanical amplification rate. While E(f7) is 

frequency dependent, for weak coupling ( ^7  ̂ /ti), we can just evaluate ôT2^ (fl) and

Fopt(n) at n  =  Hyn (see Ref. [15]). This calculation gives ôQrn = 0 and Fopt =  4^^/K i. 

So, we can re-write eqn. (5.52) as

where F ^  =  F ^  -  Fopt =  F ^  -  4^ ^ / k i .

We can use 5^(fl) in eqn. (5.54) along with the noise correlations in eqns. (5.49)- 

(5.50) to calculate the power spectrum  of laser driven mechanical mode, Sbb{^): which 

is defined as

f + OO
5tt{0)=  /  {ÿ{t)b{0))e' *̂dt (5.55)

— 00

(5.56)
(o  +  n „ )2  +  ( r f /2 ) 2 -

From this derivation we see th a t the power spectrum  has a linewidth determined by 

the effective damping rate F ^  =  F ^ ( l  — Fopt/F^). Therefore, when the optomechan-
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ical amplification rate equals the cold cavity linewidth (Fopt =  F ^  or C  =  Fgpt/F^ =  

1), a threshold condition is achieved. W hen F ^  < 0 (i.e. when C  >  1), param et

ric instability initially causes therm al fluctuations to  grow exponentially in time and 

eventually saturate  to reach coherent self-sustained oscillations. This phenomenon is 

well studied in many optomechanical systems [128,162] and is also commonly known 

as “phonon lasing” [117].

Below the lasing threshold, we can calculate the intracavity power spectrum  of 

the Stokes light using Eqns. (5.51-5.52). The power spectrum, is given by

/ + 00

(a î(i)« i(0 ))e“ 'Æ
•oo

d rn J ^ 'm i '^ h h  T  1)
((n  -  7̂7̂ )2 +  (/(i/2)2) ((n  -  ^ 777)  ̂+  (r:S^/2)^)

(5.57)

Since F 777 <C in our system, we can further simplify this equation to obtain the 

following power spectrum  for the Stokes light near H % ^ 7 7 7

/+00

(a |(t)a i(0 ))
- 0 0

4 5 ^ r„ (n th  +  1) (5,58)« ? ( ( n - n j 2  +  ( r tf /2 )2 ) '

From this equation, we see th a t the power spectrum  of the Stokes light is Lorentzian 

when C < 1 , and the linewidth of this spectrum  is determined by the effective damp

ing rate of the mechanical mode. We also see tha t, even at zero tem perature (i.e. when 

Ttth =  0), non-zero spontaneous Stokes scattering occurs due to vacuum fluctuations 

of the mechanical mode.

We perform such spontaneous scattering measurements as a function as a function 

of the input control laser power (see Fig. 5.19). First, the measurement of to tal 

backscattered light from the cavity using a power meter as a function of the input 

control laser power reveals a clear threshold of 137 mW. This threshold input control
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Figure 5.19: T herm al flu ctu ation s and m echanical self-oscilla tion , (a) We tune 
a strong control laser directly on-resonance with the high-frequency optical mode at 
CÜ2  to observe therm al fluctuations of a mechanical mode. The therm ally-populated 
phonon mode spontaneously scatters light from the higher energy optical mode at wg 
to  the lower energy optical mode at loi (Stokes field), (b) The measurement of back- 
reflected optical power as a function of the input control laser power reveals a clear 
threshold behavior a t 137 mW. This occurs because of regenerative self-oscillation 
of the phonon mode when C > 1. Note th a t linear increase in backreflected optical 
power before the threshold occurs due to imperfect coupling of the control laser to 
the optical mode at W2 . Once self-oscillating, coherent phonons scatter a large frac
tion of the input control laser into Stokes light, leading to a dram atic increase in the 
backreflected optical power. Moreover, above threshold, we observe a significant line 
narrowing of the heterodyne beat-tone of scattered Stokes light with the frequency 
shifted version of the input control laser, (c) Once the control laser is locked on res
onance with the optical mode at wg using Pound-Drever-Hall technique, we observed 
12 Hz linewidth for the heterodyne beat tone. Adapted from Ref. [111].
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laser power is consistent with the threshold 140 mW) predicted from the measured 

values of k, and Before threshold, a small 2.6%) backreflection results 

from imperfect coupling of the control laser to the optical mode at uo2 - Once self- 

oscillating, phonons scatter a large fraction of the input control laser into Stokes 

light, which exits the optical cavity through both forward and backward direction, 

leading to a significant increase in the backreflected optical power. Measuring both the 

backreflected and to tal transm itted  light, we can determine the to ta l output Stokes 

power as a function of the input control laser power. This measurement reveals a 

slope efficiency of ^  62%, which is consistent with the theoretically predicted value 

of 57% (see supplem entary section S6 of Ref. [I ll]  for details).

In addition to such power measurements, we perform heterodyne detection of the 

transm itted  light to measure the power spectrum  (S'a^ai(^)) of the spontaneously 

scattered Stokes light (see inset i of Fig. 5.19b). As expected from Eqn. (5.57), we 

observe a Lorentzian spectrum  with an effective linewidth th a t is narrower than  F^. 

Slight asymm etry in this spectrum  is a result of the slight mismatch between the 

cavity mode spacing and the phonon-mode frequency (i.e. W2  — % fl^ ).

As the control laser power is increased beyond the lasing threshold of 137 mW, 

we observe a sharp increase in the magnitude of the scattered Stokes light as well 

as dram atic spectral narrowing of the heterodyne beat tone. Note th a t our earlier 

measurements of the heterodyne beat tone (or equivalently the phonon linewidth) 

were much wider (~  20kHz) as seen in inset ii) of Fig. 5.19b. However, once the 

control laser was locked on resonance with the higher frequency optical mode at wg 

using a Pound-Drever-Hall locking technique, we observed a dram atic narrowing of the 

heterodyne beat tone. We observed linewidths of the order of 10 Hz, which was limited 

by the resolution bandwidth of the RF-spectrum  analyzer. Similar to fundamental 

(quantum) limit (also well known as Schawlow-Townes limit) for the linewidth a 

conventional laser, the fundamental quantum  backaction limited linewidth of phonon
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lasers (within optomechanical systems) is also described by Schawlow-Townes-type 

relation [163,164].

5.8 .1  P h o n o n  Laser L inew id th

Next we estim ate the quantum-backaction-limited linewidth and phase noise of our 

phonon laser. At the highest input control laser power of 204 mW, we achieve large 

cavity-enhanced coupling rate oî g-m = V ^ g ^  =  27tx 1.5 MHz, where A"2 =  6.3 x 10  ̂

and g ^  =  2 t t x  18 Hz. Moreover, from the measurement of backreflected optical 

power, we estim ate to ta l scattered output Stokes power of Ps = 42 mW (see Fig. 

5.19b) when Pin =  204mW. Knowing the scattering rate  of Stokes light per phonon, 

qoM =  4G^/K, we can calculate the steady state  coherent phonon number as

Mph =  - — -—  =  4.2 X 10^ .̂ (5.59)
hcujoM

In this case, the quantum-backaction-limited Schawlow-Townes linewidth (see Ref. 

[164]) for our phonon laser is given by

A 0  =  A ^ ( n t h  +  l )  =  27TXl.7| j ,Hz,  (5.60)
2nph

where nth =  16 at 10 Kelvin tem peratures. Such ultra-narrow linewidth would result 

in a phase noise of -147 dBc/Hz at 10 kHz offset for a 12.6 GHz optomechanical 

oscillator. Such low noise performance may be possible in our system because the 

macroscopic bulk acoustic resonator can support very large phonon occupation num

bers (~  10^  ̂ — 10^^).

Dramatic improvement in the quantum-backaction-limited phase noise perfor

mance is possible within this quartz optomechanical system by using a plano-convex 

acoustic resonator having intrinsic phonon dissipation rate  F ^  = 2tt x  300 Hz (see 

C hapter 3). For similar control input laser powers of 204 mW, we obtain a large
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steady state  phonon population of 2  x 10^^. This would result in a Schawlow-Townes 

narrowed linewidth of AQ  =  27t x 0.5 nHz at 4 Kelvin tem perature. Such highly co

herent oscillator would have a phase noise of -173 dBc/Hz at 10 kHz offset for a 12.6 

GHz optomechanical oscillator. However, a number of technical noise sources such as 

fluctuation in the input control laser power, optical absorption, and refractive index 

and sound velocity change with minute tem perature fluctuations affect the measured 

linewidth of the phonon laser. Hence, it would be necessary to manage these technical 

noise sources before such performance is achievable in practice.

5.9 P hon on  m ode cooling

W hen the control laser in on resonance with the lower frequency optical mode (wi), 

a therm ally populated phonon mode mediates scattering of incident control

photons from frequency uji to Wg =  +  Qrn through anti-Stokes process. This anti-

Stokes process can be used to produce phonon mode cooling. In what follows, we 

develop the formalism to describe and characterize this cooling process.

Similar to the derivation in Section 5.8, using the Heisenberg-Langevin equations 

of motion derived from the effective Hamiltonian in Eqn. (5.22)

HqQ =  HACL2 CL2 “h ^^rrJ^\nPrn ^̂ 77%(̂ 2 4" ^771^ 2 )? (5.61)

we obtain the following power spectrum  for the spontaneously scattered anti-Stokes 

light,

Q  ( n \  ~  _______________  / r

where is the optomechanical coupling rate, is intrinsic mechanical decay rate, 

K is the linewidth of the optical mode at wg and =  F ^ ( l  -h (7) is the effective
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Figure 5.20: T h e rm a l f lu c tu a tio n s  a n d  p h o n o n  m o d e  coo ling . (a)We tune a 
strong control laser directly on-resonance with the lower-frequency optical mode at 
Ui to observe therm al fluctuations of a mechanical mode. The therm ally-populated 
phonon mode spontaneously scatters light from the lower energy optical mode at Wi 
to the higher energy optical mode at wg (anti-Stokes field), (b) At C  >  0, anti-Stokes 
scattering increases the effective damping rate  (F ^ )  of the phonon mode.

damping rate of the acoustic due to the optomechanical coupling. As before, we 

assumed K )$> Fm while deriving Eq. (5.62).

The linewidth of the anti-Stokes power spectrum  given by F ^ /2 7 t, broadens as 

the cooperativity is increased as seen in Fig. 5.20b. This broadened noise spectrum  

(or larger effective dissipation rate) and reduction in therm al fluctuations is related 

to the lowering of the effective tem perature of the phonon mode [165,166]. Hence, 

when the control laser is on resonance with the lower frequency optomechanical mode 

(wi); we can perform phonon mode cooling. We explore this in greater detail below.

The to tal intracavity spontaneous scattering rate due to therm al fluctuations is 

given by

(5.63)

Since a 2 ,out =  the to tal optical power (Pt) in the spontaneously scattered

signal transm itted  through the optical cavity is

P t = ( 5 .6 4 )
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Figure 5.21: In te rn a i  losses (a) Schematic shows how the tilt of the quartz crystal 
w ith respect to the optical cavity axis can introduce additional internal losses for 
photons. Adapted from Ref. [112].

The to ta l spontaneously scattered power a t the detector where tj is the

system detection efficiency resulting from optical losses and detector response. The 

to tal spontaneously scattered power can be w ritten in term s of the effective occupation 

number for the phonon mode neff "  F ^ n th /F ^  as

n  r^ rith  _
Pd =  ^Pt =  Ô =  Ô-------p e fF

(5.65)

Since üefF =  F ^ h th /F ^  =  ü th /( l  +  C), üeg decreases as we increase C  by increasing 

the input control. Therefore, increasing the control laser power effectively cools the 

phonon mode.

We determine P^ through spontaneous measurements and K, and F^ through 

OMIT measurements (see Fig. 5.22). After measuring g, we determine riefr as a 

function C. For an accurate measurement of therm al occupation number, we also need 

to determine The addition of the crystal inside our Fabry-Perot optical cavity 

gives rise to an asymm etry in the external coupling rates for the input and output 

mirrors and also introduces additional intrinsic loss channels for the optical cavity 

modes. Nevertheless, by using a combination of reflection as well as transmission 

measurements of the optical cavity response, we can determine the internal loss rate
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as a function of Pjn). (d) Extracted effective phonon number as a function of C. 
From a theoretical fit to this data, we obtain ??,th ~  25 ±  1. Adapted from Ref. [112].

as well as asymmetry in the external coupling rate for an accurate measurement of

We performed such spontaneous mode cooling measurements by using a higher 

finesse (~  5000) optical cavity (i.e. using mirrors with 99.9% reflectivity). Note tha t 

because the anti-Stokes scattering scales rapidly with the decay rate of the optical 

cavity (i.e., 5oga,(n) oc l/zt^), we did not have enough signal-to-noise to  observe anti- 

Stokes scattering using the lower finesse (~  170) optical cavity with low reflectivity 

(98%) mirrors. We recorded both the OMIT spectra and the spontaneously scattered
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signal as we varied the control laser power. We measured r] — 0.37 db 0.05, ac =  

2.54 MHz, and =  27t x  (0.92 ±  0.03) MHz to obtain a calibrated measurement 

of Tieff as a function of C  (see Fig. 5.22d). A fit to rieff as a function of C  then 

allows us to determine the following value of nth =  25 ±  1, which corresponds to a 

bath  tem perature of 15.6 ±  0.7 K for the 12.6 GHz acoustic mode. Note th a t this 

tem perature is slightly higher than  the independently measured Invar tem perature 

of 11.2 K suggesting a non-negligible therm al resistance between the quartz and the 

Invar holder.

5.10 C onclusion and O utlook

In this chapter, we have dem onstrated a new type of cavity optomechanical sys

tem  th a t uses Brillouin interactions to harness high-frequency bulk acoustic waves. 

Unlike most strategies th a t rely on nanoscale and microscale structural control (i.e. 

m iniaturization) to access GHz-frequency phonons, we have utilized phase-matched 

Brillouin interactions to couple to massive ( ^  20 qg) of a bulk acoustic resonator 

w ithout any size reduction. Since our acoustic resonator has a very simple device 

geometry (i.e. a planar crystal), the experimental techniques and theoretical frame

work delineated in this chapter can be used to transform  practically any transparent 

crystalline substrates into a high-frequency cavity optomechanical system.

The versatility our optomechanical systems should lend itself to new types of 

low noise and high-power handling acoustic oscillators as well as optical Brillouin 

lasers. Since these macroscopic optomechanical devices can support large occupation 

numbers for both photons and phonons, we showed how they can be used to make 

low-noise oscillators in the regime when the intrinsic mechanical dissipation rate is 

much narrower than  the optical dissipation rate (i.e. F ^  <C ac). This regime of 

phonon lasing is accessible in most crystalline materials at cryogenic tem peratures.
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In the reverse dissipation regime (F^ ^  ac), which is typically accessible a t room 

tem perature within most crystals, we can use this same system to achieve Brillouin 

lasing. Such Brillouin lasers have a potential to be highly efficient (slope efficiency 

> 80%) and handle large powers (1-100 W  output powers). Moreover, because they 

can handle large intracavity photon number, they have a potential for ultra-low phase- 

noise performance.

The quartz based optomechanical system dem onstrated here is a promising plat

form for quantum  cavity optomechanics and presents new opportunities for robust 

control of phonons at the quantum  level. Operation of our high-frequency optome

chanical system at tem peratures below 0.9 K should allow access to the quantum  

ground state  of the mechanical resonator. Once initialized to the quantum  ground 

state, probabilistic schemes for heralding and readout of non-Gaussian mechanical 

states are feasible in our optomechanical system due to the possibility for achieving 

sub-phonon-level counting sensitivity; In addition to having large mechanical frequen

cies, which is desirable for such schemes, resonant driving of an optical mode within 

this multimode system offers an unique opportunity for finesse squared improvement 

of the phonon-counting sensitivity (see Supplementary Note SB of Ref. [111]). This 

may be a surprising advantage, as phonon counting sensitivity is independent of fi

nesse in single-mode optomechanical systems. Such probabilistic protocols for quan

tum  optical control of macroscopic phonons have a potential to be more robust against 

deleterious effects of optical absorption. This is because the greatly reduced surface- 

to-volume ratios for both light and sound mitigate the opportunity for laser heating. 

Moreover, the geometry of our mechanical resonator could enable excellent therm al 

anchoring.

Beyond probabilistic schemes, our multimode optomechanical system presents op

portunities for deterministic quantum  control of phonons. Even using the planar bulk 

acoustic wave resonator geometry, which is non-optimal for the production of high
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phononic /  • Q products, there is a clear path  towards quantum-coherent regime of op

tomechanical interaction. It is relatively straightforward to decrease the optical decay 

rate by using higher reflectivity mirrors. We already showed in this chapter how we 

could improved the finesse from the current value of {T  ~  160) to  ~  5000 should 

allow access to  the strong-coupling regime (lie =  ‘̂9m > At, F ^ ) a t relatively modest 

(~  10 mW) control laser powers while operating at ~  4 K tem peratures. Moreover, 

we can drastically improve the performance of our system through phononic resonator 

design. By shaping the bulk acoustic resonator into a plano-convex geometry it is 

possible to achieve mechanical Q-factors as large as 0.5 x 10  ̂ for phonons at 13 GHz, 

as dem onstrated in Ghapter 3. Optical control of such long-lived, high-frequency 

phonons at cryogenic tem peratures could offer a path  towards using bulk-acoustic 

wave resonators as quantum  transducers and as quantum  memories.
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Chapter 6 

Strong Coupling between Light 

and Bulk A coustic Waves

6.1 Introduction

In the previous chapter, we dem onstrated a new type of cavity optomechanical system 

in which high-frequency acoustic modes of a bulk acoustic resonator mediate resonant 

coupling between two distinct optical modes of a Fabry-Perot cavity. We showed tha t 

resonant driving of an optical mode within this system permits dram atic enhancement 

of the optomechanical coupling strength. W hen the optomechanical coupling rate 

is larger than the dissipation rate of both the optical and the acoustic mode, we 

reach the regime of optomechanical strong coupling. For a mechanical oscillator 

operating in the quantum  regime, optomechanical strong coupling can be used for 

deterministic transfer of quantum  states between the optical field and the mechanical 

oscillator or vice versa [117]. For this reason, reaching the strong coupling regime 

of optomechanical interaction has remained an intriguing area of research in cavity 

optomechanics.

So far, only a handful of cavity optomechanical systems [167-169] have demon-
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strated  strong coupling due to a variety of technical challenges associated with realiz

ing a low-loss system th a t can also support high coupling rates. W ithin micromechan

ical oscillators radiation pressure has been used to dem onstrate optomechanical strong 

coupling between MHz-frequency mechanical oscillators and optical fields. While, in 

principle, optomechanical cooling can be used to initialize such low frequency (1-100 

MHz) mechanical oscillators in their quantum  ground states for future experiments 

in the quantum  regime, optomechanical cooling inevitability increases the effective 

mechanical dissipation rate and it complicates the prospect for storage of complex 

quantum  states. Therefore, achieving optomechanical strong coupling to long-lived 

high-frequency (GHz) phonon modes, which can be initialized deep in their quantum  

ground states using standard bulk refrigeration techniques, has remained an impor

tan t challenge in cavity optomechanics.

A variety of frequency microscale and nanoscale cavity optomechanical systems 

[151-154] have been realized in order to harness coupling to GHz frequency phonons. 

In this context, optomechanical crystals [151], which use sub-wavelength structural 

control to confine photons and phonons, have emerged as a popular platform. Demon

strations ranging from ground state  cooling [155] to remote entanglement [145] within 

such systems have undoubtedly pushed cavity optomechanics in the quantum  regime.

Despite these advances, it has proven difficult to achieve strong coupling in such 

nano-optomechanical systems as a basis for deterministic protocols for coherent con

trol of mechanical motion. Spurious laser heating even at m inute optical powers has 

placed a practical limit on the number of intracavity photons [170], and hence the 

cavity-enhanced optomechanical coupling strength. Moreover, since these resonators 

are typically fabricated in materials like silicon in which optically generated free- 

carriers not only affect the optical power handling but also introduces additional loss 

channels for phonons a t cryogenic tem peratures [170].

As an alternative approach, we have seen how phase-matched Brillouin interac
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tions can perm it coupling to high-frequency (>10 GHz) phonons within bulk systems 

independent of the size of those systems. Moreover, resonant intermodal coupling per

mits dram atic enhancement of the coupling rate. More recently, Brillouin interactions 

have been used to dem onstrate strong coupling to 11.6 GHz-frequency mechanical 

modes within a whispering gallery mode resonator. While large intracavity photon 

numbers due to relatively low optical absorption in silica enables this system to enter 

the regime of strong coupling, it is difficult to achieve low-acoustic dissipation rates 

in glasses are cryogenic tem peratures. In particular, two-level tunneling states which 

are intrinsic to amorphous materials (silica) produce excess noise and dissipation at 

cryogenic tem peratures [73,171] making such high-frequency phonons not suitable for 

applications such as quantum  transduction and memories.

In this chapter, we dem onstrate robust strong coupling between infrared light and 

long-lived, high-frequency phonons of a bulk acoustic resonator. This system solves 

the challenge of achieving strong optomechanical coupling in a versatile platform 

th a t support low-loss optical as well as mechanical modes. Moreover, we configure 

our system to enter the multimode strong coupling, in which a single optical mode 

simultaneously couples to multiple modes of the bulk acoustic resonators. Finally, 

utilizing nontrivial mode hybridizations in this multimode strong coupling regime, we 

study a surprising phenomenon of radiative cancellation of extrinsic loss channels for 

phonons.

6.2 D yanm ics o f L ight-Sound in teraction  in th e  

Strong C oupling R egim e

To explore the dynamics of light-sound coupling in the strong coupling regime, we 

begin by considering a simpler case of a single optical mode coupled to a single 

acoustic mode in the linearized interaction regime [117].
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Figure 6.1: L in ea riz ed  in te ra c t io n  reg im e , (a) Schematic of the bulk acoustic 
resonator inside a high finesse optical cavity consisting of mirrors having high (99.9%) 
reflectivity, (b ) A control laser is on resonance w ith the lower frequency (wi) optical 
mode to enhance the optomechanical coupling rate and a weak probe probes the 
transmission spectrum  of the higher frequency (^ 2 ) optical mode, (c) Under stiff 
pum p approximation, we can eliminate the dynamics of the low frequency (w%) optical 
mode to obtain linear coupling between higher frequency optical mode, og, and the 
phonon mode, h. Adapted from Ref. [112].
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As seen in Section 5.5, the Hamiltonian of our optomechanical system when an 

external control laser is driven on resonance with the lower frequency optical mode 

ai (see Fig. 6.1) is given by

- f /e f f  ^ A 0 ,2 ^ 2  "f" ^ 5 ^ m ( ^ 2 ^ ? r i  "F  C L 2 ^rn ) ' ( b - 1 )

Here Qm = is the cavity-enhanced coupling rate, Ni  is the intracavity photon

number of mode a i , and A =  cj2  — o;i is the frequency spacing between the two optical 

modes. Note th a t we obtained this Hamiltonian by moving to the rotating frame of 

mode ai. The interaction term  +  ^ 2 6 )^) describes the coherent exchange of

energy between an optical mode 0 2  and the phonon mode bm-

If we ignore the dissipative terms in the Hamiltonian (i.e. assume k ,, F ^ —)• 0), the 

linearized Hamiltonian of Eqn. (6.1) can be w ritten in the m atrix form in the basis 

of U2  and hi as

A —Qm 

~  9 m

This Hamiltonian can be easily diagonalized, yielding two eigenmodes th a t are sym

metric and anti-symmetric superposition of the optical (0 2 ) and the acoustic modes 

(bm) w ith frequencies given by

LTeff = (6 .2)

0J± = ^ - ^ ^ ± J g l  + ( ^ X -  (6.3)

From this equation we see tha t, when these two coupled oscillators are on resonance 

(i.e. A =  Üm), A Qm- Therefore, we obtain an energy splitting of — o;_ =

2gm between the two eigenmodes. Moreover, on resonance, the eigenmodes are equal 

part light and sound, are given by A± =  ( 0 2  ±  5 ^ )/\/2 . W hen the oscillators are far 

from resonance (i.e. A ^  U ^), the eigenmodes are more light like or more sound like.

So far, we ignored dissipation terms in the effective Hamiltonian and just consid-

134



ered a the limiting case when g-m (ac, F^). More generally, we can write down the 

following effective interaction Hamiltonian to account for the decay ra te  of the optical 

mode (k,) as well as acoustic mode (F^) [117]

eff

A — —gm

—g-m
(6.4)

From this effective Hamiltonian we obtain the following complex eigenfrequencies

+  ±  J g l  +  (  (6.5)

As before if we look at the specific case when the two oscillators are on resonance 

(i.e, =  A), we get

F d" AC / n  f  AC
uj± =  ü m -   ±  \  g l ^ -    ( 6 .6 )

Therefore, the two eigenmodes, which are separated by 2 ^ g ^  — (F ^ — a c ) ^ / 1 6 ,  each 

inherit dissipation rate of both the optical and the acoustic mode and the dissipation 

ra te  of the each of these hybridized modes of light and sound is given by (F^ +  a c ) / 2  

(see Fig. 6 .2 ). Assuming the optical linewidth is much larger than  the acoustic 

linewidth (i.e. ac 3 > F ^), we see th a t when g-m > /c/4, the splitting between the

modes 2 - y / ^ ^  — ( a c / 4 ) ^  becomes real-valued, and we obtain two well-resolved reso

nances corresponding to the transition to the strong coupling regime.

So far, we explored the frequency response of our system in the strong coupling 

regime by just looking at the eigenfrequencies derived from the effective Hamiltonian 

in Eqn. ( 6 . 4 ) .  We will see in Section 6 . 4  th a t we can measure such frequency response 

using a weak probe to measure the transmission spectrum  of the higher frequency 

optical mode ( < 2 2  )• Alternatively, we can also measure the time dynamics of our
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Figure 6.2: O p to m e c h a n ic a l s t ro n g  co u p lin g . In the strong coupling regime, the 
optical and acoustic modes form collective excitation (symmetric and anti-symmetric 
superpositions) th a t are part light and part sound. So, as we sweep the frequency 
of the optical mode (og) and bring it on resonance with the acoustic mode (bm), 
we expect an avoided crossing in the optical transmission spectrum. The energy 
difference between such eigenmodes is exactly equal to 2gm when A =  Qm-
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system by using a weak probe excitation a t a single frequency.

To explore the time dynamics of our system, for simplicity, we s ta rt by assuming 

th a t a strong external control laser is directly on resonance w ith the optical mode 

ai- We assume a weak excitation field ap[t) at frequency Up =  +  Q th a t ex

cites the higher frequency optical mode (see Fig. 6.3). The effective Hamiltonian of 

this system by transforming to the frame rotating at uop for the optical mode (i.e. 

U2 ( )̂ —> a2 [t)e~^'^A^ and at Q for the phonon mode {hm{t) -4- we obtain

the following effective Hamiltonian

Jdgff =  fi(A Q)Oj20j2 T  ^(Qm T  ^^U2)T

% /î\/ÿ^(ap(t)a2 — a*(t)a2), (6.7)

where A =  W2  — , /c ^  is the m irror’s output coupling rate, ap{f) is normalized such

th a t the incident power in the probe light Pp =  fvjjp {a^ap). The Heisenberg-Langevin 

equations of motion derived from this Hamiltonian are given by

À2(^) =  -% (A  -  f ])a 2 (^ )  -  ^ A 2(^) +  % 7̂Ti( )̂6TTi( )̂ +  V ÿ ^ a p ( ^ )  +  (6 .8 )

p  ____
^m{t) =  ~ i{^m  ~~ Q)^ra{t) H +  ï9m{t)cL2{t) +  V^mbin, (b-9)

where b^ (dm) is the therm al fluctuations th a t drives the phonon (optical) mode.

For now, le t’s ignore the noise terms since we are using a coherent probe field 

to probe the time dynamics of our system. From the solution to Eqns. (6.8-6.9) in 

the strong coupling regime, we observe energy sloshing back and forth between the 

optical mode (^2 ) and acoustic mode (bm) in Fig. 6.3a. The energy exchange occurs 

a t the rate of 2gm (or period of l/2(p^/27r) =  ir/gm- Since the optical excitation is 

equal part light and sound, the lifetime of the excitation is given by 1/((ac +  F ^ )/2 ) % 

2/ac. Note th a t for the simulations shown in Fig. 6.3b, we assumed th a t the probe
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Figure 6.3: C o h e re n t e n e rg y  ex ch an g e  b e tw e e n  th e  o p tic a l a n d  th e  aco u s tic
m o d e , (a) In the strong coupling regime, if we were to excite our system with a weak 
probe pulse, we expect the energy to slosh back and forth between the optical and 
the acoustic modes. On resonance, =  A, the energy exchange occurs a t ra te  2gm- 
However, this energy exchange rate changes when the optical and acoustic modes are 
not on resonance as seen in (b).
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laser is on resonance with the phonon mode (i.e. = flrn) and th a t the coupling

strength is constant in time (gm(t) =  constant). However, by making the coupling 

time dependent (gm{t)), it is possible to control the optomechanical interaction and 

use it to swap energy between the optical and acoustic domain (or vice versa). W hen 

such swap-operation is implemented using a single-photon (or more generally non- 

classical optical states), it is possible to deterministically produce a single-phonon 

state  (or non-classical states) of a mechanical oscillator [117].

6.3 E xperim ental Setup

In this section, we describe the experimental apparatus used to measure frequency 

and time-domain response of our system in the strong coupling regime.

6.3 .1  F requency D om ain  M easu rem en t

We used optomechanically induced transparency (OMIT) to probe the coherent fre

quency response of our optomechanical system [157] (see Chapter 5.5 for details). 

This measurement is performed by using a control laser th a t is on-resonance with the 

lower-frequency optical mode at uji as seen in Fig. 6.4a. A probe laser synthesized 

from the same laser is swept through the higher-frequency optical mode at UJ2 . The 

transm itted  probe light is measured as a function of probe laser detuning Ü, = ujp—uji 

using heterodyne detection.

Laser light from a tunable laser (Pure Photonics PPCL300) is locked on-resonance 

to the optical cavity mode at uji using the Pound-Drever-Hall (PDH) locking technique 

as seen in Fig. 6.4c. This light a t uji is also intensity-m odulated at a variable 

frequency D using a microwave signal generator (Agilent E8257D). This generates 

additional side-bands at A D. The tone a t frequency cui serves as a strong control 

laser, whereas the weak tone a t cji +  D serves as a probe laser. The side-band at
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Lüi — ü  is irrelevant, as it is not resonant w ith any optical cavity mode due to the 

unequal FSRs. The intensity-modulated light is amplified using an erbium-doped fiber 

amplifier (EDFA) and coupled into the optical cavity using a fiber-optic polarization 

controller, a collimator, a free-space polarizer, a mirror, and a lens. Note th a t a fiber

optic variable optical attenuator placed after the EDFA is used to vary control laser 

power incident on the cavity. The light back-reflected from the cavity is separated 

from the incident light using a circulator. A portion of this back-reflected light is 

used for the PDH lock.

Light transm itted through the optical cavity is collected using a free-space lens, 

a mirror, and a fiber-optic collimator and detected using a fast photoreceiver (Nor

tel Networks PP-IOG). The spectrum  analyzer monitors the heterodyne signal at Ü 

resulting from the beat-note of the transm itted  probe laser and the transm itted con

trol laser. The same spectrum  analyzer also controls the frequency of the microwave 

signal generator, perm itting us to track the heterodyne beat-note as a function of Ü.

6.3 .2  T im e D om ain  M easu rem en t

To probe the time dynamics of our system, we use a control laser with a large, constant 

amplitude th a t is on-resonance with the optical mode at frequency and a weak 

probe pulse derived from the same laser th a t is on-resonance with the optical mode 

at CÜ2 as seen in Fig. 6.4b. Heterodyne detection of the probe signal transm itted 

through the cavity as a function of time is used to determine the time dynamics in 

our system.

A weak excitation pulse is generated by intensity-modulating the laser output us

ing a pulsed microwave drive at frequency Dm (see Fig. 6.4c); to generate such pulsed 

microwave drive, R F-output from a microwave signal generator (Berkeley Nucleonics 

845-M) at Dm +  wiF is mixed with a pulsed output of an arbitrary waveform generator 

(Tektronix AWG5014C) at wip using a single-sideband mixer. The control laser and
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Figure 6.4: S chem atic  o f th e  m easurem ent apparatus (a) We measure the fre
quency response of the higher frequency optical mode (wg) by sweeping a probe laser 
through the resonance, b) The tim e domain measurement is performed by pulsing 
a weak probe, which is on resonance with the mechanical mode, (c) The control 
as well as the probe laser light are dervied from the same laser using an intensity 
m odulator. A Pound-Derver-Hall locking technique is used to lock the control laser 
on resonance with the lower frequency (w%) optical mode. An arbitrary  waveform 
generator (AWG) is used to synthesize a pulse probe. The transm itted  probe light 
is detected using sensitive heterodyne technique for both frequency and time-domain 
measurements. PC: polarization controller, LO: local osciallator, SSB: single sideband 
mizer, IF: interm ediate frequency, PS: power splitter, DET: optical detector, BPF: 
bandpass filter, LPF: low-pass filter AMP: rf amplifier, CIRC: fiber circulator, VGA: 
voltage controlled attenuator, LPF, FM: frequency modulation, CM: Clean measure
ment, IM: intensity m odulator, and PID: proportional-integral-derivative controller. 
A dapted from Ref. [112].
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the excitation pulse are both coupled into and out of the optical cavity through a 

combination of fiber-optic collimators and free-space optics described in the previous 

section. A part of the light transm itted through the cavity is detected using a fast 

photoreceiver, generating a RF beat-note at This heterodyne signal, resulting 

from transm itted  pump light beating with the transm itted probe light, is filtered, am

plified, and demodulated using the R F-output (at of the microwave source.

The demodulated RF-signal along with the reference R F-output of the AWG (both 

a t (Uif ) are recorded as a function of time using a digital oscilloscope (AlazarTech 

ATS9870). Comparing the demodulated signal w ith the AWG output allows us to 

measure both the phase and am plitude response of our optomechanical system.

6.4 O bservation o f Strong coupling to  a single acous

tic  m ode

For simplicity, we start by configuring our system so th a t a single optical mode (#2 ) 

couples predominantly to a single acoustic mode (F^) in the linearized regime of 

optomechanical interaction. As discussed in Chapter 5, we achieve this by choosing 

optical mode pairs th a t produce appropriate acousto-optic overlaps.

Before we push our optomechanical system into the strong coupling regime, we 

performed several OMIT measurements a t low input control laser powers (< 300 \xW) 

to characterize coupling rates and dissipation rates within our optomechanical system. 

We determine and k, by fitting experimentally obtained OMIT spectrum  to

Eq. (5.40). Even though the optical mode weakly couples to many acoustic modes, 

OMIT spectra measured a t low input control laser powers are described well by 

considering coupling to just 3 acoustic modes (see Fig. 6.5a). From the values of 

obtained for the 3 acoustic modes (see Fig. 6.5b) as a function of input control laser 

power Pin, we determine th a t the coupling strength to the acoustic mode directly
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Figure 6.6: E n h a n c in g  th e  o p to m e c h a n ic a l co u p lin g  ra te ,  (a) As we push our 
system into the strong coupling regime by enhance we observe the formation of 
two hybridized modes th a t are part light and part sound, (b) The energy splitting 
between these two eigenmodes is given by 2gm, which increases proportional to 
as expected from theory. Adapted from Ref. [112].

on resonance (red) with the optical cavity mode is about 5 times larger than  tha t 

for the other weakly coupled acoustic modes (yellow and orange). From fits to  the 

OMIT spectrum  (see Fig. 6.5c-d), we also find th a t k  = 2n x  (4.43 ±  0.02) MHz and 

Fm =  27t X (66 ±  3) kHz. Note tha t we assumed equal intrinsic mechanical damping 

rate  (Fm) for the three longitudinal acoustic modes having nearly equal frequencies. 

Since gm =  we use the experimentally measured gm along with intracavity

photon number {Ni) determined from Pin to obtain the single photon coupling rate 

g ^  = 27t X (23 ±  1) Hz. Note tha t g ^  obtained experimentally agrees well with with 

the theoretically predicted value of ^  27r x 24 Hz (see Chapter 5).

To enter the strong coupling regime, we enhance gm by increasing the intracavity 

photon number of mode aj. OMIT spectra as seen in Fig. 6.6a reveals a clear 

normal-mode splitting resulting from the hybridization of the acoustic mode (bm) 

with the optical mode (ug). We observe a normal-mode splitting (2gm) th a t increases 

proportional to (see Fig. 6.6b). This is expected from theory since gm (x \/ÏVÏ oc

a / ^ .  At the highest input optical power Pin =  187 mW  used in our experiments, 

we observe a normal-mode splitting 2gm = 2tt x  14.4 MHz. Note th a t we are able to 

reach such large coupling rates because the loss loss optical cavity th a t uses pristine 

quartz crystal supports a very large intracavity photon number N\  ~  1.1 x 10^ .̂ 

This intracavity photon number is more than  7 order of magnitude larger than  those
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supported by comparable GHz-frequency optomechanical systems [170].

In addition to large optomechanical coupling rates, our system support low loss 

optical and acoustic modes. For this reason, we can readily push our system in the 

regime of strong coupling. From our measurements, we find th a t the coherent coupling 

rate far exceeds the dissipation rates of both  the optical mode (2# ^ / ^  — 3) and the 

acoustic mode (2^m/rm — 220), indicating th a t our system is in the strong coupling 

regime. In fact, even though our system operates a t ~  10 K tem peratures (nth — 25), 

we find th a t the coherent coupling rate, 2gm, far exceeds the mechanical therm al 

decoherence rate, =  nthF^ {^gmhm — 9). This means th a t our system meets the 

more stringent criteria of quantum-coherent coupling necessary for quantum  control 

of mechanical motion [168].

To dem onstrate characteristic anti-crossing feature in the strong coupling regime, 

we vary the frequency (A) of the optical mode to bring it on resonance w ith the 

acoustic mode. Since the optical FSR, A, depends on the tem perature, T, of our 

system, we can readily tune A to m atch the acoustic mode frequency, At the 

highest control laser power, we measure transmission spectra of the optical mode (ug) 

as we vary T. The measurements seen in Fig. 6.7a reveals a clear anti-crossing at 

T  = 7.6 K when A which agrees well with our predictions. Note th a t dashed

black line in Fig. 6.7a, shows how A changes w ith T, which we obtained by fitting 

the spectra to theoretical expression for probe transmission (see Eqn. 5.33).

In addition to these frequency domain measurements, we performed time-domain 

measurements of strong-coupling. These measurements perm its us to study the fun

dam ental origins of acoustic dissipation and noise in pristine crystalline solids and 

explore technological potential of acoustic systems for quantum  information storage. 

Moreover, time dependent control of our system is a stepping stone towards utiliz

ing our optomechanical interactions for deterministic quantum  state transfer between 

light and mechanics. To time-dynamics of our system, we pulsed a weak probe light
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(uj2 ) while maintaining a strong continuous drive at cui (see Fig. 6.7b). As explained 

in Section 6.3, a heterodyne signal resulting from the interference between the control 

and the probe light transm itted  through the cavity provides phase-sensitive detection 

of the probe light as a function of time. These time-domain measurements as seen 

in Fig. 6.7b, were performed at the same tem peratures as the frequency-domain 

measurements shown in Fig. 6.7a, showed charactristic Rabi oscillations when two 

resonators coherently exchange energy in the strong coupling regime [109]. As ex

pected from theory (see Fig. 6.3), we observe increasing frequency of such oscillations 

when the optical mode is far detuned form the acoustic mode. At T  =  7.6 K (when 

A ~  flm), we observe coherent oscillations with a period of 69 ns (=  1/14.5 MHz), 

which is consistent with the normal-mo de splitting 2g^ = 2tt x  14.4 MHz extracted 

from frequency domain measurements. As seen in Fig. 6.7b, the time constant r  for 

this energy decay is 70 ns (=  1/(27t x  2.27 MHz)), which agrees well with the energy 

decay rate of ( ac +  Fm)/2 ~  ac/ 2  =  27t x  2.22 MHz of the hybridized modes.

Surprisingly, we observe revivals of the coherent oscillations even after t  t  (see 

Fig. 6.7a). These nontrivial features appear because the spectrally-broad probe pulse 

excites not just a single strongly coupled acoustic mode but many weakly coupled 

acoustic modes outside the phase-matching bandwidth. Due to the modulation in the 

coupling strength produced by the phase matching conditions, g^  is suppressed for 

alternating acoustic mode numbers m  outside the phase matching bandwidth (see Fig. 

5.8c). For this reason, the observed revivals have a period of 0.82 |lis, corresponding 

to a frequency of 1.2 MHz, which is approximately twice the acoustic free-spectral 

range of 610 kHz. Since the lifetimes of such weakly coupled modes approach the 

intrinsic mechanical decay time of the uncoupled system, 1/Fm ~  2.4 |lis, the revivals 

are sustained for t ^  t .
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Figure 6.8: M u ltim o d e  s tro n g  co u p lin g  (a) We reconfigure our optomechanical 
system so th a t one optical mode couples strongly to three acoustic modes, (b )  In this 
regime, we expect four hybridized modes th a t are part light and part sound. Adapted 
from Ref. [112].

6.5 O bservation o f strong coupling to  m ultip le acous

tic  m odes

In the earlier section, we saw how weak coupling to  a m ultitude of phonon mode led 

to nontrivial tim e dynamics in our optomechanical system. To further explore such 

multimode dynamics in the strong coupling regime, we tailor our optomechanical 

system so th a t a single optical mode strongly couples to three phonon modes. As 

explained in chapter 5, we accomplish this by changing the optical wavelength to 

select a different pair of optical modes whose acousto-optic overlap perm its efficient 

coupling to  more than  one phonon mode.

We begin by performing OMIT measurements a t low input control laser powers 

(<  496|i.W) to characterize coupling rates and dissipation rates. The OMIT spectra 

taken at low power (see Fig. 6.9a) reveals three OMIT dips, corresponding to  coupling 

to three phonon modes separated by the acoustic FSR of 610 ±  10 kHz. This
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measured acoustic FSR agrees well with the theoretically predicted FSR Vo,/2Lac = 

630 kHz. To determine coupling rates to  these three acoustic modes near 12.684 GHz, 

we fit the experimentally obtained OMIT spectra to  the following equation [111]

P d ( f l )  ^2,out^2,out —
^ext

z(Q -  A) -  f  +  ZFnZ771 — i ( f 2  — m / 2 )

(6 .10)

where ft = ujp — uji is the pump-probe detuning, A =  W2  — is the optical FSR, is 

the coupling rate to acoustic mode at frequency 0 ^  having a intrinsic dissipation rate 

of Fm, K (/^ext) IS the decay rate (output coupling rate) of the optical mode a t W2 . A 

plot of the coupling rates as a function of \ / ^  as seen in Fig. 6.9b shows the expected 

linear dependence. This linear dependence can be used to  extrapolate the following 

values for the coupling rates pm/27r a t the highest input control laser power (Pin= 152 

mW): =  27t X (4.9 ±  0.1) MHz, Q2 — 2ti x  (4.0 ±  0.1) MHz and = 27t x  (3 .7± 0.1)

MHz. From the fits to the OMIT spectra, we find k = 2ti x  (2.52 ±  0.08) MHz and 

Fm =  27t X (67 ±  10) kHz. Since gi ,g 2 ,g 3 > /t/2  >  <5 >  Fm/2, this system is in the 

multimode strong coupling regime.

Before we consider coupling of a single optical mode to three phonon modes, let us 

use the Hamiltonian formulation presented in section 6.2, to  understand the salient 

features of multimode strong coupling regime. To do this, let us consider a simpler 

case of a single optical mode (n^) coupled strongly to  just two phonon modes two 

phonon modes (5i, 6 2 )- We also assume th a t the modes are separated by 25, where 

6 is the acoustic free spectral range. Furthermore, we assume th a t gi = g2 ^  g, 

Fi =  F 2  =  F, and f t i ^2 =  A d. The Hamiltonian of this three coupled oscillator 

system in the basis of &2 , ^1 , and 6 2  is given by

Hefî =

A — i/t/2 —g —g

-2*  n h - z r / 2  0

~g* 0 O2 — zF/2

(6 .11)
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low powers ( 86pW  to  496pW) when coupled almost equally to three acoustic modes. 
(b)-(d) Such spectra a t low powers can be used to extract Qm-, K, and Vm- Adapted 
from Ref. [112].

150



We can diagonalize this Hamiltonian to obtain three eigenmodes of the hybridized 

system. In the limit of large g, these eigenmodes become two “bright modes” B±  =

CL2 ±  h b i  + 6 2 ) a t frequencies =  A ±  with dissipation rates =  k,/2

and one “dark mode” D =  ^ ( 6 1  — 6 2 ) at frequency wo =  A with a dissipation rate 

k,b =  r .  The bright modes are formed from the superposition of both the optical 

and the acoustic modes whereas the dark mode lacks an optical mode component, 

meaning th a t it does not couple to light. The dynamics of such a system, and the 

existence of such bright and dark modes, has been explored in an electromechanical 

system using a GHz frequency microwave resonator strongly coupled to two MHz 

frequency micromechanical oscillators [172]. However, this regime of coupling has not 

been previously accessible for optomechanical systems.

In the strong coupling regime, we observe four distinct peaks in the transmission 

spectrum  of mode <3 2 , representing hybridization of a single optical mode with (<3 2 ) 

with three phonon modes (61, 62, and 63). From a straightforward generalization of 

the effective Hamiltonian in Eq. 6.15 to the case of 3 phonon modes, given by

Hef[ =

A — itv/2 —gi —g2

- 4 Î  ^ i - % r / 2  0

— ^2 0  V12 — %r 12

-9s 0 0

-93

0

0

fis -  %r/2

(6 .12)

we now expect four eigenmodes of the hybridized system seen in Fig. 6.10b. Of these 

eigenmodes, the two broad peaks correspond to the bright modes, whereas the two 

narrow peaks correspond to the dark modes.

We expect the decay rates of these dark modes to approach the mechanical decay 

rate  Fm =  27tx 67 kHz. However, high-resolution measurements of such modes 

at the highest control laser powers revealed decay rates Fd2  =  2 7 t  x  14 kHz and 

F d 3 =  2 7 t  X  15 kHz, which are approximately 5 times smaller than  the original
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Figure 6.10: In te rfe re n c e  o f  d ecay  c h an n e ls  in  th e  m u ltim o d e  s tro n g  co u p lin g  
reg im e , (a) Schematics showing three acoustic modes decaying into a common bath, 
(b) Observation of four hybridized eigenmodes in the strong coupling regime. The 
two narrow resonance in the probe transmission spectrum  correspond to optical Mark 
modes’, meaning the optical component of these eigenmodes vanishes for large g^.  c) 
Radiative decay channels for the acosutic modes can destructively interfere when the 
acoustic modes share a common decay channel. As a consequence, these dark modes 
have lifetimes th a t are about 5 times longer than  those of the uncoupled acoustic 
modes. Adapted from Ref. [112].
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acoustic dissipation rate Time-domain ring-down measurements using probe

pulses with a narrow spectral bandwidth centered around each dark mode confirmed 

their long-lived nature. The measured decay time of Td ^  10.9 ps for both modes 

is consistent with the linewidths. This linewidth-narrowing phenomena is surprising 

because these eigenmodes, which are hybridized excitations of light and sound, have 

decay rates th a t are smaller than  the optical and the mechanical decay rates of the 

uncoupled system.

6.6 Line-narrow ing P h en om en a and Interference

o f D issip ation  C hannels

Qualitatively, this line-narrowing phenomena for the eigenmodes in our optomechan

ical system can be described as a result of interference of dissipation pathways when 

the acoustic modes decay into a common bath. The acoustic loss in our system is 

dominated by radiative loss mechanisms such as beam diffraction and beam walk-off. 

As a result, the longitudinal acoustic modes, which have nearly identical Gaussian 

transverse mode profiles, decay into a common continuum of higher order transverse 

modes (i.e. the bath  modes) th a t span the entire crystal. Since a dark modes is 

anti-symmetric superposition of two acoustic modes th a t decay into a common bath  

modes, the dissipation pathways can destructively interfere and lead to line-narrowing 

beyond th a t of the linewidth of the uncoupled system, which is dominated by radiative 

loss mechanisms. This phenomena is analogous to the linewidth narrowing observed 

for anti-symmetric supermode formed by coupling two identical (same frequency) ring 

resonators to a single optical waveguide.
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6.6 .1  D issip a tiv e  C oup lin g  M ed ia ted  by a C om m on  R eser

voir

This interference of dissipation pathways for the acoustic modes can be described 

more quantitatively by including “dissipative coupling” terms of the form Hmn =  

—i{Vrnnl‘̂ )Hrfin M the Hamiltonian of the system [173,174]. Here, represents 

the dissipative coupling rate between two acoustic modes bn and bm m ediated by the 

bath  and it is related to  the extrinsic (or radiative) dissipation rate  by the following 

relation

Fmn =  x/Fm.eFn.e (6.13)

Please refer to the Appendix E for more details on how modes decaying into common 

bath  gives rise to such dissipative coupling term s Hmn-

To understand the line-narrowing phenomena and obtain analytical expressions 

for linewidth of the dark mode as we push our system deeper into the multimode 

strong coupling regime, we begin by considering the simplest case of two acoustic 

modes (b\ and 6 2 ) coupled to a single optical mode (^2 ). We also assume th a t the 

modes are separated by 26, where S is the acoustic free spectral range. Furthermore, 

we assume th a t =  ^ 2  =  Fi =  F 2  =  F, and f l i ^2 =  A ±  (5. The Hamiltonian of 

this system including the dissipative coupling term s in the basis of U2 , bi, and 6 2  is 

given by

^eff =

- g - g

- g * Ül -  Zh  ̂ 2

- g * ^2 — zh

(6.14)

Working on the rotating frame of the optical mode (^2 ) we can further simplify this 

Hamiltonian to  get
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- g  - 9

K s  = - V s -  q  - i ' - ^ (6.15)

_ -a*

By defining symmetric ( “bright”), B =  (6 i +  and anti-symmetric ( “dark” ),

D = {b\ — 6 2 ) / \ / 2 , superpositions of the acoustic modes we can rewrite our effective 

in the basis of &2 , B,  and D  as

\/2^

0

\/2^
_ak±£l2 

 ̂ 2

— 2

0

Ô

r-ri2

(6.16)

In this basis, we already see th a t the effective dissipation rate for the dark mode is 

given by (P — Bi2 ). We also see from this Hamiltonian th a t only the bright mode 

directly couples to the optical mode, while dark mode is coupled to the bright mode 

by Ô. The final basis transform ation involves forming the hybridized states of a and 

B  to give B±  =  (a +  B )/\ /2 . If we also make the approximation th a t )$> B, Bi2 , the 

Hamiltonian in the basis of B+, and D  is given by

- V 2 g

S
V2

5

S
V2

:r-ri2

(6.17)

From this Hamiltonian we can see th a t the dark rate  has a dissipation rate given by

(6.18)Fd -  (r -  r,2) +  J

Note th a t the first term  on the right hand side of this equation comes from the 

interference of the decay pathways (or the coupling m ediated by the bath  cancels
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the radiative decay channels for phonons). Whereas the second term  comes from the 

coupling of the dark state, D, to  the two bright modes and R_, each of which has 

a decay rate of /^/2 .

From Eqn. (6.18), we see th a t the linewidth of the dark mode decrease proportion 

to  1 /( 7 ,̂ and for large g, Td (F -  F i2 ). This makes sense because a t large g, 

the optical component of the Dark mode vanishes and the only contribution to its 

dissipation comes from the acoustic modes themselves.

W hen g is large and the acoustic dissipation rate for the acoustic modes were 

entirely due to radiative losses then F i 2  =  y/Ti^e^2 ,e =  vT ^  =  F, meaning Fjo —)■ 0 . 

However, as explained in Appendix E, in addition to the extrinsic dissipation channels 

we have considered so far, acoustic resonators also have intrinsic sources of dissipation 

such as scattering and absorption, where the phonon modes do not share common 

bath. In this case F^ —)■ F ,̂ where F  ̂ =  F —Fg is the intrinsic acoustic dissipation rate. 

This intrinsic acoustic dissipation rate (F^) is typically much smaller than  acoustic 

linewidth (F) within pristine crystalline solids at cryogenic tem peratures. So, we 

expect the lifetimes of these dark modes to be significantly longer than  the lifetime 

of the uncoupled acoustic mode.

Analogously, to understand the experimentally observed line-narrowing phenom

ena when couple a single optical mode to three acoustic modes, we take the effective 

Hamiltonian of Eqn. 6.12 and include the dissipative coupling terms

H,eff

A -  2̂ ~9i —92 93

- 9 l Di —

~92 _ o b 2 1  
 ̂ 2 912 ~  “ *4 ^

~9s  ̂ 2
— D3 —  4

(6.19)

From the OMIT measurements a t low power, we measured the coupling rates (pi, 

p2 , and ps), the dissipation rates {k and F), phonon mode frequencies (Di, D2 , D3 ),
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and the optical mode spacing (A). We then numerically diagonalize the effective 

Hamiltonian in Eqn. (6.19) while adjusting Ei2  =  E — by hand to obtain the 

theoretical dissipation rate curves in Fig. 6.10c. We see th a t the linewidth of the 

dark modes as a function of power, agrees well with the theoretical description of the 

system discussed above. Here, we only took F̂  =  27t x 5 kHz as the fit parameter, and 

this value is consistent with the independent measurements of the acoustic damping 

in quartz crystals at cryogenic tem peratures [108].

Finally, we emphasize th a t our experiment combines three crucial ingredients tha t 

are necessary to observe the effect of linewidth narrowing beyond th a t of the bare 

acoustic modes. First, the extrinsic loss has to be dominant. Second, the multimode 

strong coupling to the optical mode effectively eliminates the frequency difference 

between the acoustic modes so th a t their extrinsic dissipation channels can interfere. 

Finally, the bath  coupling th a t leads to this dissipation is approximately equal and 

in-phase so th a t this interference is destructive for the dark state  th a t is decoupled 

from the optical mode in the limit of large g.

6.7 C onclusions and O utlook

In summary, we utilized resonant Brillouin interactions to dramatically increase the 

optomechanical coupling strength, perm itting us to engineer strong coupling between 

optical photons (~  200 THz) and high-frequency (~10 GHz) mechanical modes of a 

bulk acoustic resonator. Since such resonators provide access to a m ultitude of long- 

lived, high-frequency phonons, we strongly coupled a single optical mode to more than  

one phonon modes as a basis for more sophisticated control of mechanical motion. 

Using non-trivial mode hybridizations in this so-called multimode strong coupling 

regime, we created eigenmodes th a t had lifetimes th a t significantly (~  5 x ) longer 

than  those of the modes the uncoupled system. We developed a theoretical framework
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to understand such lifetime enhancement by considering dissipative couplings between 

acoustic modes tha t share a common bath.

Even though our system is in the quantum-coherent strong coupling regime nec

essary to observe quantum  effects [168], we need to make a number of improvements 

to our system to achieve robust ground state  control of phonons for aforementioned 

applications. First, we need to initialize our mechanical system deep in its quantum  

ground state. Since the therm al occupation number, rzth < 0 . 1  for 12.6 GHz phonons 

at tem peratures < 250 mK, we can reach quantum  ground state  of mechanical motion 

by using a standard dilution refrigerator.

For operation at mK tem peratures, we need to reduced input optical powers and 

pay careful attention to optical scattering losses. Decreasing k, by improving mirror 

reflectivity to 99.99 % and utilizing low-loss crystalline substrates with larger Brillouin 

gain (such as Te0 2 ) could enable access to the strong coupling regime at < 100 |uW 

input powers. These improvements, along with low duty-cycle pulsed operation of 

the control laser with micro-W att average powers could make operation in dilution 

refrigerators feasible.

These improvements could offer new opportunities for harnessing bulk acous

tic phonons for future applications ranging from quantum  information to precision 

metrology. Through time dependent control of the coupling rate in the strong cou

pling regime, it should be possible to deterministically swap quantum  states between 

the optical domain and the acoustic domain for quantum  transduction and quan

tum  information storage (i.e. quantum  memories). If the input fields are quantum  

states (such as single photons), it should also be possible to harness optomechanical 

strong coupling to deterministically create non-classical mechanical states and ex

plore quantum  phenomena within macroscopic objects [175]. More generally, it has 

been shown th a t acoustic waves within BAW resonators couple strongly to a variety 

of other quantum  systems such as superconducting qubits [110], defect centers [176],
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and microwave fields [177]. Therefore, deterministic control of bulk acoustic waves 

using light in the strong coupling regime could be a valuable tool for connecting var

ious quantum  systems. Last but not least, multimode strong coupling between light 

and mechanical modes of a BAW resonator could be used to probe intrinsic phonon 

loss mechanisms on practically any transparent crystal.
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Chapter 7

Conclusions and Outlook

In this dissertation, we presented an alternative strategy th a t relies on phase-matched 

Brillouin interactions, rather than  wavelength-scale structural control, to optically 

access GHz frequency mechanical modes within macroscopic crystalline solids. Ex

ploration of stim ulated Brillouin scattering within crystalline solids at cryogenic tem

peratures yielded surprisingly long lifetimes for high-frequency phonon modes and 

new dynamics for light-sound coupling.

To access such long-lived phonons modes, we shaped the surfaces of the crys

tals to create stable acoustic cavities th a t m itigate extrinsic losses. Analogous to 

Gaussian resonator design in optics, we formulated novel analytical design guidelines, 

numerical techniques, and microfabrication techniques to create stable plano-convex 

acoustic cavities and perm itted phonon mode engineering. Beyond optomechanics, 

these findings were crucial to  creating emerging hybrid quantum  systems in which a 

superconducting qubit is coupled to a high-frequency bulk acoustic wave resonator.

Through the theoretical treatm ent developed to understand the dynamics of Bril

louin scattering at low tem peratures, we bridged the gap between cryogenic Bril

louin physics and cavity optomechanical systems. As a result, bulk acoustic phonons 

within practically any transparent crystalline solid can now be harnessed to create ro
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bust high-frequency cavity optomechanical systems. Leveraging the well-established 

framework of optomechanics, we were then able to engineer strong interaction be

tween light fields and bulk acoustic wave as a basis for deterministic quantum  control 

of phonons.

W ith these demonstrations, one can envision utilizing optical control of bulk acous

tic waves a variety of classical technologies, including new types of lasers and oscil

lators. At cryogenic tem peratures, when the acoustic dissipation rate is significantly 

smaller than  the optical dissipation rate, we dem onstrated regenerative self-oscillation 

of the mechanical mode. However, we can also engineer our system so th a t the optical 

dissipation rate is much smaller than  the acoustic dissipation rate to achieve Brillouin 

lasing. Brillouin lasing within our optomechanical system has a potential to be highly 

efficient (slope efficiency > 80%), avoid cascading, handle large powers (1-100 W  out

put powers), and have sub-Hz linewidth. Moreover, by adapting the microfabrication 

techniques developed in this dissertation to make on-chip optical lenses, it may be 

possible to dem onstrate high-performance Brillouin lasers on-chip.

Optomechanical systems utilizing bulk acoustic phonons are promising platforms 

for experiments in the quantum  regime. Operation of our high-frequency optome

chanical system at tem peratures <  250 mK should allow access to the quantum  

ground state  of the mechanical resonator. Once initialized to the quantum  ground 

state, probabilistic schemes for heralding and readout of non-Gaussian mechanical 

states are feasible in our optomechanical system because it is possible to achieve sub- 

phonon-level counting sensitivity [111, 178]. Such probabilistic protocols for quantum  

optical control of macroscopic phonons have a potential to be more robust against 

deleterious effects of optical absorption.

Beyond probabilistic schemes, our multimode optomechanical system presents op

portunities for deterministic quantum  control of phonons. Some early experimental 

measurements suggest th a t it is possible to further increase the finesse of our opti-
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cal cavity from the current value of 5000 to 30000, which would allow us to access 

the strong coupling regime at <  100 pW  input powers. These improvements, along 

with low duty-cycle pulsed operation of the control laser with micro-W att average 

powers could make operation in dilution refrigerators feasible. Deterministic optical 

control of such long-lived, high-frequency phonons at cryogenic tem peratures could 

offer a path  towards efficient quantum  transducers and quantum  information storage 

devices.

162



A ppendix A

H am iltonian Treatment: More 

details

For a system of finite mode volume, we can use the following normal mode expansion 

to write

=  +  (A .l)
27

u(r) = Y 1 \ I  WÛA(r) +  H.c. (A.2)
A

where Dj{r)  is the eigenmode obtained by solving the Maxwell’s equation, is the 

optical mode amplitude operator and is the optical mode frequency, is

the acoustic mode obtained by solving the elastic-displacement equation, b\  is the 

acoustic mode amplitude operator, and is the phonon frequency. Note th a t 7  and 

A are collective mode indices. The optical and acoustic modes are normalized such
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th a t

— (  dV  *(r)D*(r) • Dy(r) =  6 ,̂y (A.3)
0̂ J

j  dV  p(r)nADA/U%(r) • ÛA'(r) =  ô'a,a' (A.4)

The mode amplitude operators satisfy the following commutation relations:

[u.^, t ly ]  =  0 , [u.^, t ly ]  =  ^7 ,7 ', ( A .5)

[̂ A, ^A'] =  0, [6a, b\;] = 6'a,a'- (A.6)

Using the normal mode expansion, the normalizations and the commutation rela

tions we can write down the optical, acoustic and interaction Hamiltonian in terms 

of the mode amplitude operators as

IP '' =  y ]  ftfiA(6pA  +  1/2) (A.7)
A

=  y ]  hujy{a\ay +  1/2) (A.8)
7

H'"" =

I  dr ^ ^ ' ( r )  +  H.c.) [ a y ^ , { v )  +  H.c.) (b^S'^{r) +  H.c)

(A.9)

This treatm ent is valid for any system with finite size having discrete optical and 

acoustic modes. However, we are interested in looking at the interaction between 

traveling wave pump photons with mode profile, wave-vector, and frequency given 

by (Dp(r), kp,ujp) with the Stokes wave photons with mode profile, wave-vector, and 

frequency (Dg(r), —A:g, Wg) mediated by phonons. Therefore, the optical eigenmodes 

of our interest, ignoring small reflections at the crystal end facets, are traveling-waves
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of infinite extent in z (equivalent to a system with length I -7 oo)

f>7(r) 1-4 D7(r)e'^L (A.IO)

Therefore, using the following normal mode expansion

D(r) =  J  +  J  +  H.c.

(A .ll)

to write the optical Hamiltonian as

=  y*dA: hüüp{k)alj^apk +  ^  dA: &Ug(A:)a4^a&. (A.12)

It is im portant to note th a t we have assumed th a t the eigenmode profiles Dp(r) and 

D s(r) for the pump and Stokes traveling waves in a narrow band about their respective 

carrier wave-vector remains unchanged. Here, the mode amplitude operators ak have

units of y/[Length]. The optical mode profiles are normalized at each point in z such 

th a t

-  /  drx A (r)D ;(r) ■ D ,(r ) =  1 (A.13) 
J

-  [  drx A (r)D :(r) • D ,(r) =  1. (A.14) 
J

Extended coherence length of the phonons and the formation of discrete standing 

wave cavity modes for acoustic waves results in markedly different nonlinear optical

susceptibility in the coherent-phonon limit. We will explore this in the next subsec

tion.

In the coherent-phonon limit, where the coherence lengths of acoustic waves are 

much longer than  crystal length (Lac ^  L), acoustic waves can form standing wave
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cavity modes th a t extend throughout the crystal. Therefore, the modes of our interest 

are of the form

ÛA(r) (A.15)

where the standing wave acoustic modes have discrete wavevector Qm = 27rm/L, for 

any integer m, and U^(r) is the mode profile th a t varies slowly in z compared to the 

carrier wavevector. Since we have discrete acoustic modes in the coherent-phonon 

limit, the acoustic Hamiltonian is

=  (A. 16)
m

where we have used the following normal mode expansion for the acoustic displace

ment field

u(r) =  y ]  +  H.c. (A. 17)
V2

and acoustic mode profiles are normalized so tha t

J  dV  n^p(r)U„(r)* ■ U„(r) =  1. (A. 18)

We can now use Eq. (A.9) along with the the normal mode expansion in Eq. (A. 17) 

and Eq. (A. 11) to write down the following interaction Hamiltonian in the coherent- 

phonon limit

=  E /  +  H.c. (A. 19)

166



where g^{z)  th a t characterizes the single-photon coupling rate is

| d r x ( i 3 ’ (r ))* D K ry ^ “ (r) .

(A.20)

As before, we have assumed th a t the coupling ra te  in the narrow band of wavevec- 

tors around the carrier wavevectors for pump and Stokes remains unchanged. This 

coupling ra te  between traveling wave photons and a discrete phonon mode has dimen

sions of Hz. Note th a t the wavevector k  and k' for photons are continuous variables 

whereas the wavevector Qm for a phonon mode is discrete.
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A ppendix B

Ham iltonian transformed into

real-space:coherent-phonon limit

Traveling wave acousto-optic interaction results in the spatial evolution of optical 

fields in z. In /c-space this amounts to increasing occupation numbers for the mode 

amplitude operators around their respective carrier wavevectors. To transform the 

Hamiltonian of our system into real-space description, we define the following mode 

envelope operators for the optical fields

A ,(z) =  /  ^  (B .l)

A,{z) = j  (B.2)

Taking the Fourier transform  to write apk and agk in terms of Ap{z) and As{z) we can

write Eq. (A. 12) in terms of the mode envelope operators as [107,115,179]

= J  dz hüüpA^p{z)Ap{z) — i J  dz hVoA^p{z)dzAp{z) 

+ J  dz h u j s A l ( z ) A s { z ) i  J  dz hVoAl{z)dzAs{z),
(B .3 )
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where we have assumed linear dispersion for optical waves in a bulk medium (i.e 

ujp{k) = üüp{kp) +  Vo{k -  kp) and üüp{k) = U0p(kp) -  Vo(k -  (-/c^))).Finally, the real- 

space optical Hamiltonian in Eq. (B.3) can be written succinctly in term s of the mode 

envelope operators as

=  y  dz hAl{z)ujp^zAp{z) +  y  dz hA\{z)uJs,zAs[z), (B.4)

where the spatial operators ujp̂ z =  Wp — ivodz and Coŝ z — oOg + ivodz- Note th a t the 

electric displacement field in Eq. (A. 11) can be expressed in term s of the mode 

envelope operators as

D(r) ~  +  H.c.. (B.5)

Finally, the interaction Hamiltonian in Eq. (A. 19) can be w ritten in real space in 

term s of the mode envelope operators as

=  y ]  / d z  +  H.c.. (B.6)
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A ppendix C

Free-space cooper at ivity

For the derivation of free-space cooperativity, we use an alternate definition of co- 

operativity, which is equivalent to the definition of cooperativity in the main text.

Cooperativity is also a figure of merit th a t compares the ratio of optical contribution

to the mechanical damping and the intrinsic mechanical damping. We follow a deriva

tion of cooperativity similar to th a t in cavity optomechanics [117,161,180] by finding 

an effective mechanical susceptibility in presence of the optomechanical interaction.

We look at the cooperativity for a phonon mode labeled by index m. We start by 

considering the coupled mode equations derived from the Hamiltonian in Appendix 

A with optical dissipation rate ac/ 2 and acoustic dissipation rate  F ^ /2  added phe- 

nomenologically as

/  K j \  f

^ s k  — ~ ( ^ s k  ~  ^  I  ~ 2 ^  9 m O ^  1 (^A)

d p k  ~  ^  i u J p { J z )  — J  C L pk i  j  2 ^  9 m { k - ,  k  ^ C L s k ' ^ m i  ( ^ • ^ )

bm =  ---- Ki — i J  2̂ — ^')^lk>^pk +  (C.3)

We have phenomenologically added external force /ext(/) in the equation of motion for 

the phonon field to derive the effective mechanical susceptibility under optomechan-
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ical coupling. In our system, we assume th a t the crystalline medium is essentially 

transparent to the traveling wave optical beams. The optical beams experience neg

ligible loss inside the crystal. We will eventually take the limit of zero optical loss to 

derive our cooperativity.

We derive cooperativity in the limit of weak coupling and assuming undepleted 

pump. It is convenient to work in an interaction frame th a t is rotating at ujp (i.e. 

CLsk{t) â s k { t ) e ~ ^ ‘̂ A  and a p k { t )  d p ke ~ ^ '^ A y  Note th a t the pump field is freely

evolving and not changing in time. Hence, âpk  is just a constant. So, we arrive at

these equations of motion for Stokes and the phonon held

/ AC \ f
Ô̂ ski '̂) =  2Wg(/c) - f  iiOp — —J âsk{ t )  — 2 /  ( ^ - 4 )

b m { t )  =   b m  — i  j '  '9 m i ^ ^  ^ ' ) ^ l k ' i ^ ) ^ p k  +  f e x t ( t ) -  (^-5)

Now we make the undepleted pump approximation, so th a t âpk =  dkpS{k — kp) is 

a delta function th a t is peaked at the wavevector kp.  It is im portant to note th a t 

because 6{k — kp) has units of L  and our mode amplitude operators âpk has units of 

VX, â kp  has units of 1/VX. Now, we perform the integrals in A;-space in Eqs. (C.4) 

and (C.5) to obtain

âsk{t) =  zA(A:) — —̂  âsk{t) — —  9miK^

b m { t )  =  ------bm ~  i â k p  J  — g' ^ {k p ,  k ' ) a \ j^ , { t )  -H f e x t { t ) ,  (C .7 )

where A{k)  =  —ujp -\-0Js{k) is the detuning between the pump and Stokes wave, âkp 

is related to the input pump power incident on the crystal as [115]

Pp =  l ^  (C.8)

In the Fourier domain, using the the transform ation 6^[f4] =  dt e^^X^[t] and
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asfc[n] =  df e'^^^ask{t), we obtain 

5 , . H  -  (C.9,

'-M  ■ n  ̂n , Ï  ir,/2 /  2 7 + n - f t ,  + ir./2^"l“'

Substituting Eq. (C.9) in Eq. (C.IO) gives

6™[n] =  Xm,eff[n]/ext[n] (C .ll)

^  n  -  ( n „  +  d'o;[fi]) +  i ( r „  +  r .p .(n )) /2 -^ " '(^ ] '

where

=  ~ \ ^ k p \ ‘̂  I  ^  \ 9 m { k p , k ) \ ‘̂  ( 0 _ A ( f c ' ) ) 2 + ( K / 2 ) 2  +  ^ ( 0 - A ( f c ' ) ) 2 + ( K / 2 ) 2

(C.14)

and the frequency dependent mechanical frequency d(u[n] =  — R e^^M  and the optical 

contribution to the damping is F^pt [H] =  2ImJ^[n]. We define the cooperativity in our 

system as the ratio of optical contribution to the phonon damping and the intrinsic 

phonon damping as =  Fopt/F^. The optical contribution to the phonon damping 

is

Fopt[^2] =  2 I m [ ^ ( Q ) ]  =  — 2 \ â k p \ ‘̂ J  ̂  (Q -A(k ' ) ) ‘̂-\-{K/2)‘̂ \9m{kp^ k ) \  .

(C.15)

/c')p, which is a sine squared function, is peaked at the Stokes wavevector 

kg =  —{üüp — ft) /vs.  If we now take the limit of negligible optical loss (i.e. the limit 

where the sharply peaked Lorentzian in Eq.(C.15) samples the sine squared function),
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we o b ta in

/ AU a /̂2
4^2 {Q -  v,k'  -  v ^ k U  +  (K/2)^

(C.17)
27TUgg

^ (C-18)bUJpVgpVgg

W hen the frequency detuning between the pump and Stokes light matches the phonon 

mode frequency the cooperativity is given by

C
fs _  ro p t(n „) ^  ^

F t t t ,  b lL Ü p V g g V g p ^ L  f f l
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A ppendix D

Derivation of Stability Criterion  

and anisotropy parameter

D .l  A nisotropy param eter and S tab ility  C riterion

In this section, we derive the stability criterion for longitudinal acoustic modes in 

anisotropic crystalline medium along certain crystalline axes. We begin by considering 

a specific case of longitudinal modes propagating along T-cut silicon. We chose this 

specific crystalline cut because the dispersion surfaces are parabolic and symmetric 

along the propagation direction. We start with the Christoffel equation for elastic 

wave propagation in an anisotropic medium

where Ui is the component of the acoustic displacement vector, Cikim is the elastic 

constant tensor and p is the density of the medium. Using the symmetry property of
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th e  e la s tic  te n s o r  in  cu b ic  c ry s ta l  E q . ( D .l )  re d u ces  to

piL\ =  CiiUi^ii +  044̂ 1̂ 22 +  C44'̂ 1,33 +  (̂ 12 +  C44)('^2,12 +  ̂ 3,13); (D.2)

pU2 =  044̂ 2,11 +  CiiU2,22 +  C44'̂ 2,33 +  (̂ 44 +  Ci2)(Wl,12 +  ̂ 3,23); (D.3)

yOÜ3  =  0 4 4 ^ 3 ^ 1 1  +  044̂ 3̂ 22 +  ^1 1 ^ 3 ^ 3 3  +  (Ci2  +  C4 4 ) (1/ 4 ^ 1 3  +  ̂ 2 ,2 3 ) 5  (D.4)

where is the reduced elastic tensor coefficient, and Um,ji = {d‘̂Um)/ [dxjdxi).  We 

see th a t the diffraction term s (0 4 4 ^ 1 ,2 2 , ^ 4 ^̂ 1 ,3 3 ) for the longitudinal acoustic wave 

propagating along x  is symmetric about 3 ;-axis. So for simplicity, we consider 2D 

acoustic beam propagation along x  — y plane (i.e. ignore term s related to  the dis

placement U3 ). This results in the following coupled differential equation for the

acoustic displacement fields

d x  —  U U x , x x  T  'k̂ t ^ x , y y  T  ^/ l '^y , xy :  (D-5)

~  U '^y,xx 4- Vi '^y,yy 4" '^I'^x^xyt (^fo)

where vi =  i /o n /p ,  Vt =  y/cX /p, and 7 1  =  \ J (ci2  4- 0 4 4 )/^ . We now consider a 

longitudinal wave propagating along 3 ;-direction i.e. u (r,t) =  where

A (r) =  A^{x,  y)x  + Ay{x, y)y, and ko = 9t/vi. For paraxial beam propagation along x, 

we make the slowly varying envelope approximation (i.e. d ‘̂ A i /d x ‘̂ ko^Ai, i =  x, y) 

to  obtain the following coupled equations from Fqs. (D.5-D.6)

- k l v ^ A ^  =  +  v f ^  -  (D.7)

- k y , A ,  = - k l v l A ,  -  (D.8)

To solve these equations, we Fourier transform  A(r) to  /c-space. So using A^{x^ y) =  

1 /y X r /  dkyA^{x, ky)é^yy and Ay{x, y) =  1/V X r /  dkyAy{x, we get following
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first order differential equations

— h ipAx +  iqÀy =  0, (D.9)
ox

c)A
—A ~  +  Ay T  isAx = 0, (D.IO)
ox

where p =  - 2;^) +2;^A;^)/(2u^A;o), and

5  =  7 ^/cy/(2 u^). Applying {dx +  i r )  on Eq. (D.9) and making the paraxial approxi

mation, we finally get

+ = (D .ii)
O X  p - \ -  r

Assuming ky ko in the paraxial limit we get

rp-qs  _ k„{vy -  vf +  ?f) f  ky^
p - \ - r  - 2 v f { v f  -  v f )  \ k o

We can now re-write Eq. (D .ll)  as

=  - k l A , ,  (D.13)

where k' =  koX, and the “anisotropy-param eter” , % is given by

Note th a t Eqn. (D.13) for acoustic wave propagation in the paraxial limit, is similar to 

the paraxial approximation to the scalar wave equation for electromagnetic field [181]. 

However, for the acoustic wave propagation in the paraxial limit there is an additional 

factor of X in the propagation constant (i.e. k' = koX)- While we have determined % 

analytically, it is also possible to obtain % numerically by fitting a quadratic function 

to the slowness surfaces [119]. It is well known from optics th a t Gaussian beams
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satisfy the paraxial approximation to the wave equation [118]. Therefore, assuming 

acoustic field polarized along x  (i.e. u (r,t) =  A{x,  with initial acoustic

field at X =  0 as A{x = 0,y) ^  Aoexp{—y ‘̂ /wl),  we can solve Eq. (D.13) to get

u(r, t) = A o X - ^ e x p  (  exp +  i f  ( z ) l  exp {-i{koX -  Dt)),
w \ x )  \  w \ x Y  J \  2Rf(x) J

(D.15)

where

2tt
k' =  koX — \ — X for phonon with wavelength Aph,

Aph

Wo is the acoustic waist radius a t x =  0,

w'{x) =  ^ is the acoustic waist radius a t x.

TTwf
=  T~^X is the acoustic Rayleigh length, 

Aph
1 /  X \

Jâ'(x) = — ( X — —  I is the radius of curvature of the acoustic beam ’s wavefronts at x, 
X \  y

ip 'M  =  arctan ( ^  ) is the acoustic Gouy phase at x.

Now th a t we have determined propagation equations for the Gaussian acoustic wave, 

we can perform stable Fabry-Pérot resonator analysis for the acoustic cavity similar 

to th a t for a two-mirror optical cavity [118]. For stim ulate Given two surfaces with 

radius of curvatures Ri  and R .2 with spacing t between, we need to find a Gaussian 

beam th a t periodically refocuses upon each round trip. Let us assume th a t this 

Gaussian beam with an initially unknown spot size Wo is a t an initially unknown 

location such th a t the refiecting surfaces are at distances X\ and X2 away (see Fig. 

D .l). For periodic refocusing, the acoustic beam s’ radius of curvatures R!{x) need to
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Figure D .l: A c o u s tic  re s o n a to r  d esig n . Phonon cavity of length t w ith two sur
faces w ith radii of curvature Ri  and R 2 . A dapted from Ref. [108].

m atch w ith radius of curvatures of the two mirrors. This gives us three equations

=  i  A  +

R'{X2) =  -  (x2 + —
%  X  :C 2

t  =  X 2 — X i -

= Ri,

= R 2 ,

(D.16)

(D.17)

(D.18)

We now invert Fqns. (D.16-D.18) to find the Gaussian beam param eters Xi 

and X2 in terms of R i, R 2 and t .  So, if we define acoustic resonator "^-parameter" as 

follows

1̂ =  1 -  - 4 r  0̂2 =  1 - (D.19)

we can find the Gaussian beam param eters in term s of gi, g2 and t .  The Rayleigh 

length for this trapped Gaussian beam is given by

^ ^ 2  ^  ^ 1 ^2 ( 1 - ^ 1 ^2 ) ^ 2 (D .2 0 )
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The locations of the curved surfaces with respect to the Gaussian beam waist are

=  f U — f G - i ,  (D.21)

(d .22)
9 l  A- Q2 — z g 2Q2

From Fq. D.20 and the definition of the Rayleigh length derived earlier, we can obtain 

the Gaussian beam waist size at x =  0 and x  = t

.2 AAph /  ^1^2(1 — 9192)
4  V ( 3i + . 92- 2 . 9 1 , 9 2 ) ^ ’

^ l  = — \ - F r ^  V (D 24)y 2̂(1 -  1̂ 2̂)

From equations (D.20) & (D.23 ) we see th a t for real and finite solutions to the

Gaussian beam param eters and the beam waist size, we see th a t 0 <  ^ 1 ^ 2  <  1- For

a plano-convex phononic resonator discussed in this paper, Ri =  0 0  so, =  1 and

X \  0 .

We can also analytically calculate the frequency spacing between the higher-order 

transverse modes, because in the paraxial limit higher order Her mite- G aussian modes 

are also solutions to the paraxial equation in Fq. (D.13).

Un{x, y) = AoxHn ( X  (D.25)

exp +  2 (7 1 4- l / 2 ) f  (a;)^ exp (-iA^^a;), (D.26)

where R^s are the Hermite polynomials of order n and are also solutions to Fq. 

(D.13). To calculate the higher order mode frequency spacing we look at the to tal 

round trip  phase shift along the cavity axis (i.e. ^ =  0), which must be an integer
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m u ltip le  o f 27t. T h is  g ives us th e  fo llow ing  e q u a tio n

-ho t  +  (n +  1 /2 )( f (^ )  -  f  (0)) =  7T (D.27)

+  (n +  l/2)j/.'W  =  ÎT (D.28)

So the higher-order transverse mode spacing is given by

" 27t " ' "  /  (D.29)

with the Rayleigh length given by Eq. (D.20).
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A ppendix E

Derivation of the dissipative  

coupling term

To derive this additional term, Hmn, and how multimode strong coupling leads to 

interference of decay pathways, we begin by considering a simpler case of a single 

optical optical mode (<2 2 ) coupled to two acoustic mode ( 6 1  and 6 2 ). This derivation 

is also outlined in Ref. [112].

In the rotating frame of the pump, the undriven and linearized Hamiltonian for 

our system under the rotating wave approximation is given by

= hAala2 +  ^  hQrnblnbm -  Y 2  b^dmia'^bm +  b'Ya). (E .l)
m  m

As discussed in Ref. [I ll] , the acoustic loss in our system is likely dominated by 

diffraction or a tilt of the crystal relative to  the optical axis. Both of these effects can 

be viewed as a coupling of each resonator mode, whose transverse profile is determined 

by the optical cavity field, to the transverse modes of the entire crystal. Therefore, 

these extrinsic, geometric loss mechanisms are most accurately described using the 

input-output formalism for a resonator coupled to an external bath  of modes [166] as 

seen in Fig. 6.10a. In our case, all of the acoustic modes bm are coupled to a common
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set of ba th  modes Cq a t frequency ujg with rates fm,q, giving rise to the coupling 

Hamiltonian

W  = -  H . C . ) .  (E.2)
q m

The Hamiltonian of the bath  is given by

^bath _  ^  hWqC\Cq, (E.3)
Q

and the Hamiltonian of the to ta l system is given by

H  = +  R E  (E.4)

The coupled equations of motion (EOM) for the bath  and resonator modes are then

bq = ~ix}qCq +  ^  ] fm,qbmi (^-3)
m

L  =  M  +  y ]  (E.6)
Q

Following the analysis of Ref. [166], we solve for the EOM of the resonator modes 

and obtain

L  =  6..] -  -  E  (E.7)
n^m

Here, we have made the usual Markov approximation and assumed th a t the coupling 

is independent of frequency so th a t fm,q =  fm, which lets us introduce a decay rate 

r^ ,e  =  27t l/^l^ p, where p = ^  — cUg) is a constant density of bath  states. Fur

thermore, since the resonator modes we are interested in are different longitudinal 

modes w ith the same transverse profile, it is fair to  assume th a t all fm are approxi
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mately equal. For now, we m aintain a bit more generality and assume th a t they all

have the same phase, which allows us to define Tmn =  y/W rfTV f• We emphasize, 

however, th a t the sign of the last term  in Equation E.7 is in general determined by 

the relative phase of the bath  coupling for different resonator modes.

In addition to the extrinsic dissipation we have considered so far, acoustic res

onators also have intrinsic sources of dissipation such as scattering and absorption. 

Therefore, to be complete, we introduce an intrinsic decay rate T^,*, so th a t the to

tal dissipation rate for each acoustic made is Fm =  +  F ,̂%, corresponding to the

linewidth extracted from OMIT spectra in the limit of weak optomechanical coupling. 

The final equations of motion for the optical and acoustic modes are then;

=  iAcL2 7 ^  ^ Qmbm (E.8)
m

i>m — bm]-----^
n^m

= —iCtmbm — Wm^ l^bm ~  (^ '9)
n^m

Therefore, we can obtain the additional term  — in Eqn. (E.9) resulting

from acoustic modes decaying into a common bath  by simply adding a “dissipative 

coupling” term  Hmn = -«(Fmn/2)6]^5„ to
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A ppendix F

Fabrication D etails

In this appendix, we outline detailed fabrication steps used to make plano-convex 

resonators in a variety of crystalline substrates. We start w ith the solvent vapor 

reflow, which we have used successfully to create photoresist hemispheres on quartz, 

silicon, sapphire, and G a As wafers.

F .l  Solvent Vapor R eflow

•  S tart w ith a double-sided polished wafer. Inspect the wafer to make sure the 

wafer is not contaminated. If the wafer has dust or other particulates, u ltra

sonic clean the wafer in NMP, acetone, and methanol solution, respectively, 

for 3 minutes each. Then clean the wafer using a piranha solution (3 parts of 

concentrated sulfuric acid and 1 part of 30% hydrogen peroxide solution) for 10 

min to remove organic contaminates. Rinse the wafer in DI water for 1 minute 

and then blow dry with N 2 gas.

•  Oxygen plasma clean the wafer for 3 min at RF-power of 150 W  and a pressure 

of 300 mTorr. This helps eliminate the possibility of any organic contam inants 

as well as prepare the crystal surface for good resist adhesion.
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•  Spin coat a 5.5 um thick layer of photoresist (AZP 4620) on the wafer. Thinner 

photoresist such as AZP 4330 can also be used to obtain even thinner pho

toresist height of approximately 3 um. Please look up the appropriate resist 

spin curves to get the spinner speed and time. Typically, thinner photoresist 

height translates to shallower contact angle after reflow and hence larger radius 

of curvatures for the reflowed photoresist.

•  After spinning, post-bake the AZP 4620 at 110 °C for 2 minutes. Note th a t 

since we care about both surfaces of the wafer being clean, do not directly put 

the wafer on the hotplate. Instead put a clean glass side on the hotplate, let it 

thermalize, and put the wafer on top of this clean glass slide. The AZP 4330 is 

post baked at 100 °C for 1 minute.

•  A lithographic photomask was used to deflne circular structures and used during 

UV exposure of the positive photoresist (400mJ/cuY  a t 405 nm wavelength for 

AZP 4620 and 150 m J/cm ^ at 405 nm wavelength for AZP 4330).

•  Develop the exposed photoresist using 1:4 AZ400K:water developer solution. 

Development time is 5 min for AZP 4620 and 2 min for AZP 4330.

•  Vapor prime the photoresist cylinders using resist adhesion promoter hexam- 

ethyldisilizane (HMDS) for 15 minutes. To do this, pu t a few drops of HMDS 

inside a closed chamber and then place the wafer inside it.

•  To reflow the photoresist using solvent vapor, place the wafer upside down 

(not touching the liquid) inside the chamber th a t contains polypropylene gly

col monomethyl ether acetate (PGMEA) solvent a t 55 °G. The wafer itself is 

heated at 60 °C. Typically the photoresist cylinders reflow to form hemispherical 

surfaces completely within a few hours.
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• After the reflow, bake the wafer at 90 °C for 1 minute and 110 °C for another 

10 minutes to get rid of the solvent.

• Before reactive ion etching, ultrasonic clean the wafer in DI water for 3 minutes 

and heat the substrate in a hot plate to get ride of the moisture as well as 

harden the photoresist. For thicker photoresist AZP 4620 (AZP 4330), gradually 

increase the tem perature from 125 °C (110 °C) to 170 °C (130 °C) over the 

course of 5 minutes to harden the photoresist.

The hemispherical patterns defined by the photoresist is transferred onto the sub

strate  m aterial by completely etching away the photoresist using reactive ion etching 

(RIE). We outline the etching recipes th a t we developed to etch various crystalline 

substrates, yielding plano-convex resonators with excellent surface quality.

F.2 R eactive  ion etch ing

•  S tart by running a standard fluorine or chlorine based cleaning recipe based on 

which substrate you are etching (see below).

•  Run a conditioning run with the following param eters based on the substrate 

material.

-  To etch single crystal quartz or fused silica substrates, we perform a slow 

reactive ion etch using SFg and Ar gases with 4 SCCM and 14 SCCM flow 

rates, respectively, at a low chamber pressure of 4 mTorr and a bias voltage 

of 370 V is used to etch away the photoresist completely.

— To etch single crystal silicon, we use SFg and O 2  gases with 5 SCCM and 

2 SCCM flow rates, respectively, a t a chamber pressure of 10 mTorr and a 

bias voltage of 394 V.
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— To etch single crystal GaAs, we perform RIE-ICP using BCI3  and Ar gases 

with 5 SCCM and 10 SCCM flow rates, respectively, at a chamber pressure 

of 7 mTorr and a bias voltage of 444 V. RE power is set a t 85 W  and ICP 

power at 250 W  and the etching is performed at 3 °C.

— To etch single crystal sapphire, we perform RIE-ICP using CI2  and BCI3  

gases w ith 6  SCCM and 24 SCCM flow rates, respectively, at a chamber 

pressure of 30 mTorr and a bias voltage of 406 V. RE power is set at 75 

W  and ICP power at 600 W  and the etching is performed at 11 °C.

•  After the etching is complete. Ultrasonic clean the wafer in DI water, NMP, 

acetone, and m ethanol for 3 minutes each.

•  To passivate the surfaces of silicon after RIE, clean the wafer in piranha solution 

(3:1 mixtures of sulfuric acid and hydrogen peroxide) for 10 minutes. Then rinse 

in DI water for 1 minute.

•  Dip the silicon substrate in diluted HE (5 parts DI water, 1 part 49% HE) for 

1 minute to  remove the native oxide layer. Finally, blow dry with N2  gas.
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A ppendix G

M ethods: M easurem ent of

acousto-optic coupling

G .l  s tim u la ted  B rillou in  Scattering M easurem ents

For stim ulated Brillouin scattering measurements, we use counterpropagating laser 

fields and measure the energy transfer from the higher frequency pump field to the 

lower frequency Stokes field. For such measurements, we not only want the laser fields 

to be co-linear but also need to ensure good overlap w ith the acoustic mode, which 

is defined by the plano-convex geometry. In what follows we outline the steps taken 

to  align pump and Stokes laser fields to the plano-convex acoustic resonator.

•  First, we remove the lenses (f)-(g) as well as the plano-convex crystal (DUT) 

from the setup seen in Fig. G .l and use two pinholes to ensure th a t the pump 

and Stokes light are co-linear. In the setup show in Fig. G .l, the pump (Stokes) 

field impinges the crystal from the left (right).

•  Turn off the Stokes light. Add the lens (f) so th a t the pump light is passing 

roughly through its center. The DUT is also placed in between the two lenses 

so th a t the pump light roughly passes through its center and the left surface of
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P u m p  ligh t S tokes ligh t

Figure G .l: S etu p  used  to  m easure coupling o f  bulk acou stic  w aves using  
free-space laser beam s. Free-space collimators: (a), (k), (1); Mirrors: (b), (j), (m); 
half-wave plate: (c), (h); quarter-wave plate: (d); 90:10 beam splitter: (e); lens: (f), 
(g); free-space isolator: (j).

the crystal is about a focal length away from the lens (f).

•  S tart by aligning the pum p field normal to the surface of the crystal. To do 

this, adjust the mirror (b) and lens (f) so th a t the back-reflected light from the 

DUT goes back through the  free-space collimator (a) first using a laser a t 632 

nm . Then, switch the laser source to 1550 nm, monitor the backscattered light, 

and maximize it to  ensure the pum p field is normal to the surface of the crystal.

• To align the laser light parallel to the crystal axis, sweep the wavelength of 

the laser and monitor the backreflection. Small reflections on the quartz-air 

interface means th a t you should see a modulated reflection spectrum  when the 

two surfaces of the plano-convex crystal forms a low finesse optical cavity.

•  Now add lens (g) and adjust (g) and (i) so th a t the pump light passes through 

the free-space collimator (k). By maximizing pum p light transm itted  through 

collimator (i) you ensure th a t the path  of the counterpropagating optical beams 

are co-linear.

•  Now turn  on the probe light and align mirror (1) and collimator (m) so tha t 

~10% of the Stokes light reflected from the beam -splitter (e) is coupled through
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Figure G.2: O p tic a l c a v ity  m o u n te d  in  a  In v a r  h o ld e r. A schematic (a) and an 
actual picture (b) showing a monolithic Invar holder which consists of a bulk crystal 
placed inside a high-finesse optical cavity. A dapted from Ref. [112].

the free-space collimator (m).

• Ensure th a t the polarization of the pum p and probe beam inside the crystal are 

colinear.

• Finally, place a free-space isolator (h) in the setup so prevent pump light from 

entering collimator (i). This ensures th a t the only stim ulated Brillouin scatter

ing we are measuring is from the free-space setup(i.e the crystal) and not from 

the optical fibers.

G.2 C oupling to  a h igh-finesse optical cavity

In this section, we outline the steps to couple light into high-finesse optical cavity 

(see Fig. G.2). We begin by aligning the optical beam normal to the planar mirror.

•  S tart by removing the lens (d) and the polarizer (b) as seen in Fig. G.3.

•  Do a very coarse alignment by adjusting both the mirror (c) and free-space 

collimator (a) such th a t the red laser ( 632 nm) is roughly a t the center of the
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optical cavity (e). Adjust (a) and (c) until the backreflection spot is overlapping 

with the light coming out of the free-space collimator (a).

•  Switch the light source to 1550 nm. Now perform a fine alignment by monitoring 

the backrefiected power and adjusting both  (a) and (c) to maximize it.

•  Add the lens (d) and translate it in z  & ^-direction such th a t the laser passes 

roughly through its center. At this point, the backreflection should already be 

close to the maximum.

• Readjust both  (c) and (d) to maximize back-refiection.

• Translate the lens (d) in z-direction so th a t the optical cavity is a t the focus 

and re-optimize both  (c) and (d) to obtain maximum back-refiection.

We now outline the steps taken to center the beam on the optical axis.

• Switch the light source to a red laser ( 632 nm) and look at the light transm itted 

through the cavity. Translate the lens (d) in x  and y direction so th a t multiple 

reflections coalesce into one ‘blob’. Now, the beam should be pretty close to 

the optical axis.

• Switch the light source to 1550 nm and change the mirror (c) to maximize back- 

refiection. This way we fix the tilt misalignment th a t we introduced when we 

adjusted lens (d).

•  Sweep the wavelength of the laser source continuously over several optical FSRs. 

Adjust the lens (d) as well as the mirror (c) to get large dip depths for the 

fundamental modes of the optical cavity.
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Figure G.3: F ree -sp ace  s e tu p  u se d  to  c o u p le  lig h t In to  th e  h ig h -fin esse  o p ti
cal cav ity . Free-space collimator; (a); polarizer; (b); mirror: (c); lens: (d); optical 
cavity; (e).
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