1. S Gundavarapu, M Puckett, T Huffman, R. Behunin, J. Wu, T. Qiu, G. M. Brodnik, C. P. Pinho, D. Bose, P. T. Rakich, J. Nohava, K. D. Nelson. M. Salit, and D. J. Blumenthal “Integrated Waveguide Brillouin Laser.” Arxiv, 1709.04512 [PDF]

  2. Qiu, Wenjun, P. T. Rakich, Marin Soljacic, and Zheng Wang. “Stimulated brillouin scattering in slow light waveguides.” Arxiv, 1210.0738 [PDF]

  3. R. Behunin, P. Kharel, W. Renninger, H. Shin, F. Carter, E. Kittlaus, and P.T. Rakich, “Long-lived guided phonons by manipulating two-level systems in silica,” Arxiv, 1501.04248. [PDF]

  4. R. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal “Fundamental noise dynamics in cascaded-order Brillouin lasers.” ArXiv 180203894 [PDF]

  5. E. A. Kittlaus, N.T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich “Nonreciprocal Inter-band Brillouin Modulation.” (Coming to Arxiv Soon)

  6. Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf “Climbing the phonon Fock state ladder.” ArXiv 180407426 [PDF]

  7. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, and P. T. Rakich “Optomechanical cooling in a continuous system.” ArXiv 180502502 [PDF]

Journal Publications

  1. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser.” Science, (360): 1113 (2018) [PDF]

  2. P. Kharel, Y. Chu, M. Power, W. H. Renninger, R. J. Schoelkopf, and P. T. Rakich, “Ultra-high-Q phononic resonators on-chip at cryogenic temperatures.” APL Photonics, (3): 066101 (2018) [PDF]

  3. W. H. Renninger, P. Kharel, R. O. Behunin, and P. T. Rakich, “Bulk Crystalline Optomechanics.” Nature Physics, (14): 601 (2018) [PDF] [See News and Views by M. Tobar]

  4. Y. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L. Frunzio, P. T. Rakich, R. J. Schoelkopf, “Quantum acoustics with superconducting qubits.” Science, (358): 199 (2017) [PDF]

  5. E. Kittlaus, Prashanta Kharel, N. T. Otterstrom, Z. Wang, P. T. Rakich, “RF-photonic Filters via Photonic-Phononic Emit-Receive Operations.” Journal of Lightwave Technology [Advanced Online Publication] (DOI: 10.1109/JLT.2018.2809589) [PDF]

  6. P. T. Rakich and F. Marquardt. “Quantum Theory of Continuum Optomechanics.” New Journal of Physics (20): 045005 (2018) [PDF]

  7. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip Inter-modal Brillouin Scattering.” Nature Communications (8):15819 (2017) [PDF]

  8. R. O. Behunin, P. Kharel. W. H. Renninger, and P. T. Rakich. “Engineering dissipation with phononic spectral hole burning.” Nature Materials December (2016) (doi:10.1038/nmat4819) [PDF]

  9. E. A. Kittlaus, H. Shin, and P.T. Rakich, “Large Brillouin amplification in silicon,” Nature Photonics (10): 463 (2016) [PDF]

  10. W. Renninger, R.O. Behunin, and P.T. Rakich, “Guided-wave Brillouin scattering in air,” Optica, (3): 1313-1319 (2016).[PDF]

  11. R. O. Behunin, F. Intravaia, and P. T. Rakich, “Dimensional transformation of defect-induced noise, dissipation, and nonlinearity,” Physical Review B, (93): 224110 (2016).[PDF]

  12. W. Renninger and P.T. Rakich, “Closed-form solutions and scaling laws for Kerr frequency combs,” Scientific Reports, (6): 24742. [PDF]

  13. P. Kharel, R. O. Behunin, W. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Physical Review A, (93): 063806 (2016). [PDF]

  14. W. Renninnger, P. Kharel, R. O. Behunin, E Kittlaus, H. Shin, and P.T. Rakich, “Forward Brillouin Scattering in Hollow-core Photonic Bandgap Fibers,” New Journal of Physics (18):025008 (2016) [PDF]

  15. H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P.T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nature Communications (6):6427 (2015) [PDF]

  16. S. H. Mousavi, P.T. Rakich, and Z. Wang, “Strong THz and Infrared Optical Forces on a Suspended Single-Layer Graphene Sheet,” ACS Photonics 1 (11): 1107-1115 (2014). [PDF]

  17. H. Shin, P.T. Rakich “Optomechanics: Photons that pivot and shuttle,” Nature Nanotechnology 9 (11): 878-880 (2014). [PDF]

  18. W. Qiu, P.T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Optics Express , 21 (25): 31402-31419 (2013). [PDF]

  19. H. Shin, W. Qi, R. Jarecki, J.A. Cox, R.H. Olsson, A. Starbuck, Z. Wang, and P.T. Rakich “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nature Communications (4):1944 (2013).[PDF] [See News & Views by Luc Thevenaz – Nature Photonics]

  20. S. M., Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs. ”All-optical-switching demonstration using two-photon absorption and the zeno effect,” Physical Review A , 87(2):023808 (2013). [PDF]

  21. P.T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the sub-wavelength limit,” Physical Review X 2(1):011008 (2012) [PDF]. [News & Views by Alex Gaeta Nature Photonics]

  22. Z. Wang and P.T. Rakich, “The response theory of optical forces in photonics systems: a simplified framework for examining conservative and non-conservative forces,” [Invited] Optics Express, 19(22):22322–22336 (2011). [PDF]

  23. P.T. Rakich, Z. Wang, and P. Davids, “Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion,” Optics Letters, 36(2):217 – 219 (2011). [PDF] [Among Top-10 Most Frequently Downloaded Papers – Jan 2011]

  24. P. E. Hopkins, L. M. Phinney, P. T. Rakich, III Olsson, R. H., and I. El-Kady, “Phonon considerations in the reduction of thermal conductivity in phononic crystals,” Applied Physics A, 103(3):575 – 579,(2011).[PDF]

  25. P.T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Optics Express, 18(14):14439 – 14453 (2010).[PDF]

  26. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nature Materials, 9(8):643 – 648 (2010).[PDF]

  27. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljacic, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Applied Physics Letters, 96(10):101110 (2010).[PDF]

  28. P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Optics Express, 17(20):18116 – 18135 (2009).[PDF]

  29. P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Applied Physics Letters, 95(16):161902 (2009).[PDF]

  30. P. T. Rakich, Y. Fink, and M. Soljacic, “Efficient mid-IR spectral generation via spontaneous fifth-order cascadedRaman amplification in silica fibers,” Optics Letters, 33(15):1690 – 1692 (2008).[PDF]

  31. T. Barwicz, C.W. Holzwarth, P.T. Rakich, M.A. Popovic, E.P. Ippen, and H.I. Smith, “Optical loss in silicon microphotonic waveguides induced by metallic contamination,” Applied Physics Letters, 92(13) (2008). [PDF]

  32. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nature Photonics, 1(11):658 – 665 (2007). [PDF]

  33. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photonics, 1(1):57 – 60 (2007). [PDF]

  34. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kaertner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” [Invited] Journal of Optical Networking, 6(1):63 – 73 (2007).[PDF]

  35. P.T. Rakich, M.A. Popovic, M.R. Watts, T. Barwicz, H.I. Smith, and E.P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Optics Letters, 31(9):1241 – 1243 (2006).[PDF] [Selected to be featured in the Virtual Journal of Nanoscience and Technology]

  36. P.T. Rakich, M.S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G.S. Petrich, J.D. Joannopoulos, L.A. Kolodziejski, and E.P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nature Materials, 5(2):93 – 96 (2006).[PDF]

  37. M.A. Popovic, T. Barwicz, M.R. Watts, P.T. Rakich, L. Socci, E.P. Ippen, F.X. Kaertner, and H.I. Smith, “Multistage high-order microring-resonator add-drop filters,” Optics Letters, 31(17):2571 – 2573 (2006).[PDF]

  38. C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kaertner, and Henry I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” Journal of Vacuum Science & Technology B, 24(6):3244 – 3247 (2006).[PDF]

  39. T. Barwicz, M.A. Popovic, M.R. Watts, P.T. Rakich, E.P. Ippen, and H.I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” Journal of Lightwave Technology, 24(5):2207 – 2218 (2006).[PDF]

  40. P.T. Rakich, H. Sotobayashi, J.T. Gopinath, S.G. Johnson, J.W. Sickler, C.W. Wong, J.D. Joannopoulos, and E.P. Ippen, “Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2-2.0 µm supercontinuum,” Optics Express, 13(3):821 – 825 (2005).[PDF]

  41. G.N. Nielson, D. Seneviratne, F. Lopez-Royo, P.T. Rakich, Y. Avrahami, M.R. Watts, H.A. Haus, H.L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photonic Technology Letters, 17(6):1190 – 1192 (2005).[PDF]

  42. S. Akiyama, M.A. Popovic, P.T. Rakich, K. Wada, E. Michel, H.A. Haus, E.P. Ippen, and L.C. Kimerling, “Air trench bends and splitters for dense optical integration in low index contrast,” Journal of Lightwave Technology, 23(7):2271 – 2277 (2005).[PDF]

  43. C.W. Wong, P.T. Rakich, S.G. Johnson, M.H. Qi, H.I. Smith, Y. Jeon, G. Barbastathis, SG Kim, EP Ippen, and LC Kimerling, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Applied Physics Letters, 84(8):1242 – 1244 (2004).[PDF]

  44. M.H. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A threedimensional optical photonic crystal with designed point defects,” Nature, 429(6991):538 – 542 (2004).[PDF]

  45. T. Barwicz, M.A. Popovic, P.T. Rakich, M.R. Watts, H.A. Haus, E.P. Ippen, and H.I. Smith, “Microring-resonatorbased add-drop filters in SiN: fabrication and analysis,” Optics Express, 12(7) (2004).[PDF]

  46. S. Assefa, P.T. Rakich, P. Bienstman, S.G. Johnson, G.S. Petrich, J.D. Joannopoulos, L.A. Kolodziejski, E.P. Ippen, and H.I. Smith, “Guiding 1.5 µm light in photonic crystals based on dielectric rods,” Applied Physics Letters, 85(25):6110 – 6112 (2004).[PDF]

  47. A.A. Erchak, D.J. Ripin, S. Fan, P. T. Rakich, J.D. Joannopoulos, E.P. Ippen, G.S. Petrich, and L.A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Applied Physics Letters, 78(5):563 – 565 (2001).[PDF]